939 research outputs found

    Propagating waves in an extremal black string

    Full text link
    We investigate the black string in the context of the string theories. It is shown that the graviton is the only propagating mode in the (2+1)--dimensional extremal black string background. Both the dilation and axion turn out to be non-propagating modes.Comment: Minor corrections, 11 pages in ReVTeX, no figure

    Double-Well Potential : The WKB Approximation with Phase Loss and Anharmonicity Effect

    Get PDF
    We derive a general WKB energy splitting formula in a double-well potential by incorporating both phase loss and anharmonicity effect in the usual WKB approximation. A bare application of the phase loss approach to the usual WKB method gives better results only for large separation between two potential minima. In the range of substantial tunneling, however, the phase loss approach with anharmonicity effect considered leads to a great improvement on the accuracy of the WKB approximation.Comment: 14 pages, revtex, 1 figure, will appear at Phys. Rev.

    Thermodynamics and evaporation of the noncommutative black hole

    Full text link
    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.Comment: 16 pages, 6 figures, added references, to appear in JHE

    The absence of the Kerr black hole in the Ho\v{r}ava-Lifshitz gravity

    Full text link
    We show that the Kerr metric does not exist as a fully rotating black hole solution to the modified Ho\v{r}ava-Lifshitz (HL) gravity with ΛW=0\Lambda_W=0 and λ=1\lambda=1 case. We perform it by showing that the Kerr metric does not satisfy full equations derived from the modified HL gravity.Comment: 35 pages, no figure

    Dilaton gravity approach to three dimensional Lifshitz black hole

    Full text link
    The z=3 Lifshitz black hole is an exact black hole solution to the new massive gravity in three dimensions. In order to understand this black hole clearly, we perform a dimensional reduction to two dimensional dilaton gravity by utilizing the circular symmetry. Considering the linear dilaton, we find the same Lifshitz black hole in two dimensions. This implies that all thermodynamic quantities of the z=3 Lifshitz black hole could be obtained from its corresponding black hole in two dimensions. As a result, we derive the temperature, mass, heat capacity, Bekesnstein-Hawking entropy, and free energy.Comment: 13 pages, 1 figure, version to appear in EPJ
    • …
    corecore