2,351 research outputs found

    Phase transitions for the Lifshitz black holes

    Full text link
    We study possibility of phase transitions between Lifshitz black holes and other configurations by using free energies explicitly. A phase transition between Lifshitz soliton and Lifshitz black hole might not occur in three dimensions. We find that a phase transition between Lifshitz and BTZ black holes unlikely occurs because they have different asymptotes. Similarly, we point out that any phase transition between Lifshitz and black branes unlikely occurs in four dimensions since they have different asymptotes. This is consistent with a necessary condition for taking a phase transition in the gravitational system, which requires the same asymptote.Comment: 19 pages, 7 figures, a revised version to appear in EPJ

    Thermodynamics of an Evaporating Schwarzschild Black Hole in Noncommutative Space

    Get PDF
    We investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of a radiating Schwarzschild black hole. We show that evaporation process is in such a way that black hole reaches to a maximum temperature before its final stage of evolution and then cools down to a nonsingular remnant with zero temperature and entropy. We compare our results with more reliable results of string theory. This comparison Shows that GUP and space noncommutativity are similar concepts at least from view point of black hole thermodynamics.Comment: 15 Pages, 2 Figures, revised and refernces adde

    Quintessence and Brane world scenarios

    Get PDF
    We discuss the possibility of quintessence in the dilatonic domain walls including the Randall-Sundrum brane world. We obtain the zero mode effective action for gravitating objects in the dilatonic domain wall. First we consider the four dimensional (4D) gravity and the Brans-Dicke graviscalar with a potential. This can be further rewritten as a minimally coupled scalar with the Liouville-type potential in the Einstein frame. However this model fails to induce the quintessence on the dilatonic domain wall because the potential is negative. Second we consider the 4D gravity with the dilaton. In this case we find also a negative potential. Any negative potential gives us negative energy density and positive pressure, which does not lead to an accelerating universe. Consequently it turns out that the zero mode approach of the dilatonic domain wall cannot accommodate the quintessence in cosmology.Comment: 10 pages, some ambiguity in mathematical expressions corrected and references adde

    Regular black hole in three dimensions

    Full text link
    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.Comment: 15 pages, 16 figures, 3D noncommutative black hole included as Sec 4, a version to appear in EPJ

    Nonpropagation of massive mode on AdS2 in topologically massive gravity

    Full text link
    Making use of Achucarro-Ortiz (AO) type of dimensional reduction, we study the topologically massive gravity with a negative cosmological constant on AdS2 spacetimes. For a constant dilaton, this two-dimensional model also admits three AdS2 vacuum solutions, which are related to two AdS3 and warped AdS3 backgrounds with an identification upon uplifting three dimensions. We carry out the perturbation analysis around these backgrounds to find what is a physically propagating field. However, it turns out that there is no propagating massive mode on AdS2 background, in contrast to the Kaluza-Klein (KK) type of dimensional reduction. We note that two dimensionally reduced actions are different and thus, the non-equivalence of their on-shell amplitudes is obtained.Comment: 19 pages, version to appear in EPJ

    Cosmic holographic bounds with UV and IR cutoffs

    Full text link
    We introduce the cosmic holographic bounds with two UV and IR cutoff scales, to deal with both the inflationary universe in the past and dark energy in the future. To describe quantum fluctuations of inflation on sub-horizon scales, we use the Bekenstein-Hawking energy bound. However, it is not justified that the D-bound is satisfied with the coarse-grained entropy. The Hubble bounds are introduced for classical fluctuations of inflation on super-horizon scales. It turns out that the Hubble entropy bound is satisfied with the entanglement entropy and the Hubble temperature bound leads to a condition for the slow-roll inflation. In order to describe the dark energy, we introduce the holographic energy density which is the one saturating the Bekenstein-Hawking energy bound for a weakly gravitating system. Here the UV (IR) cutoff is given by the Planck scale (future event horizon), respectively. As a result, we find the close connection between quantum and classical fluctuations of inflation, and dark energy.Comment: 15page

    BTZ black hole and quantum Hall effect in the bulk/boundary dynamics

    Get PDF
    We point out an interesting analogy between the BTZ black hole and QHE (Quantum Hall effect) in the (2+1)-dimensional bulk/boundary theories. It is shown that the Chern-Simons/Liouville(Chern-Simons/chiral boson) is an effective description for the BTZ black hole (QHE). Also the IR(bulk)-UV(boundary) connection for a black hole information bound is realized as the UV(low-lying excitations on bulk)-IR(long-range excitations on boundary) connection in the QHE. An inflow of conformal anomaly(c=1c=1 central charge) onto the timelike boundary of AdS3_3 by the Noether current corresponds to an inflow of chiral anomaly onto the edge of disk by the Hall current.Comment: 8 pages, this version to appear in Phys. Rev.
    • …
    corecore