13 research outputs found

    Molecular and functional profiling identifies therapeutically targetable vulnerabilities in plasmablastic lymphoma

    Get PDF
    B-cell lymphoma; Cancer geneticsLinfoma de células B; Genética del cáncerLimfoma de cèl·lules B; Genètica del càncerPlasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype frequently associated with immunosuppression. Clinically, patients with PBL are characterized by poor outcome. The current understanding of the molecular pathogenesis is limited. A hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in 60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a MYC translocation. Here, we provide a comprehensive integrated genomic analysis using whole exome sequencing (WES) and genome-wide copy number determination in a large cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-STAT, and NOTCH pathways as well as frequent high-level amplifications in MCL1 and IRF4. The functional impact of these alterations is assessed using an unbiased shRNA screen in a PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular targets to improve outcome of PBL patients.Open Access funding enabled and organized by Projekt DEAL

    Clinical relevance of molecular characteristics in Burkitt lymphoma differs according to age

    Get PDF
    While survival has improved for Burkitt lymphoma patients, potential differences in outcome between pediatric and adult patients remain unclear. In both age groups, survival remains poor at relapse. Therefore, we conducted a comparative study in a large pediatric cohort, including 191 cases and 97 samples from adults. While TP53 and CCND3 mutation frequencies are not age related, samples from pediatric patients showed a higher frequency of mutations in ID3, DDX3X, ARID1A and SMARCA4, while several genes such as BCL2 and YY1AP1 are almost exclusively mutated in adult patients. An unbiased analysis reveals a transition of the mutational profile between 25 and 40 years of age. Survival analysis in the pediatric cohort confirms that TP53 mutations are significantly associated with higher incidence of relapse (25 ± 4% versus 6 ± 2%, p-value 0.0002). This identifies a promising molecular marker for relapse incidence in pediatric BL which will be used in future clinical trials

    Activity of tafasitamab in combination with rituximab in subtypes of aggressive lymphoma

    Get PDF
    BackgroundDespite recent advances in the treatment of aggressive lymphomas, a significant fraction of patients still succumbs to their disease. Thus, novel therapies are urgently needed. As the anti-CD20 antibody rituximab and the CD19-targeting antibody tafasitamab share distinct modes of actions, we investigated if dual-targeting of aggressive lymphoma B-cells by combining rituximab and tafasitamab might increase cytotoxic effects.MethodsAntibody single and combination efficacy was determined investigating different modes of action including direct cytotoxicity, antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) in in vitro and in vivo models of aggressive B-cell lymphoma comprising diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL).ResultsThree different sensitivity profiles to antibody monotherapy or combination treatment were observed in in vitro models: while 1/11 cell lines was primarily sensitive to tafasitamab and 2/11 to rituximab, the combination resulted in enhanced cell death in 8/11 cell lines in at least one mode of action. Treatment with either antibody or the combination resulted in decreased expression of the oncogenic transcription factor MYC and inhibition of AKT signaling, which mirrored the cell line-specific sensitivities to direct cytotoxicity. At last, the combination resulted in a synergistic survival benefit in a PBMC-humanized Ramos NOD/SCID mouse model.ConclusionThis study demonstrates that the combination of tafasitamab and rituximab improves efficacy compared to single-agent treatments in models of aggressive B-cell lymphoma in vitro and in vivo

    Molecular and functional profiling identifies therapeutically targetable vulnerabilities in plasmablastic lymphoma

    Get PDF
    Plasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype frequently associated with immunosuppression. Clinically, patients with PBL are characterized by poor outcome. The current understanding of the molecular pathogenesis is limited. A hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in 60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a MYC translocation. Here, we provide a comprehensive integrated genomic analysis using whole exome sequencing (WES) and genome-wide copy number determination in a large cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-STAT, and NOTCH pathways as well as frequent high-level amplifications in MCL1 and IRF4. The functional impact of these alterations is assessed using an unbiased shRNA screen in a PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular targets to improve outcome of PBL patients

    Combination Treatment Targeting mTOR and MAPK Pathways Has Synergistic Activity in Multiple Myeloma

    Full text link
    Multiple myeloma (MM) is an incurable, malignant B cell disorder characterized by frequent relapses and a poor prognosis. Thus, new therapeutic approaches are warranted. The phosphatidylinositol-3-kinase (PI3K) pathway plays a key role in many critical cellular processes, including cell proliferation and survival. Activated PI3K/AKT (protein kinases B)/mTOR (mammalian target of rapamycin) signaling has been identified in MM primary patient samples and cell lines. In this study, the efficacy of PI3K and mTOR inhibitors in various MM cell lines representing three different prognostic subtypes was tested. Whereas MM cell lines were rather resistant to PI3K inhibition, treatment with the mTOR inhibitor temsirolimus decreases the phosphorylation of key molecules in the PI3K pathway in MM cell lines, leading to G0/G1 cell cycle arrest and thus reduced proliferation. Strikingly, the efficacy of temsirolimus was amplified by combining the treatment with the Mitogen-activated protein kinase kinase (MEK) inhibitor trametinib. Our findings provide a scientific rationale for the simultaneous inhibition of mTOR and MEK as a novel strategy for the treatment of MM

    The transcription factor C/EBP beta orchestrates dendritic cell maturation and functionality under homeostatic and malignant conditions

    Full text link
    Dendritic cell (DC) maturation is a prerequisite for the induction of adaptive immune responses against pathogens and cancer. Transcription factor (TF) networks control differential aspects of early DC progenitor versus late-stage DC cell fate decisions. Here, we identified the TF C/EBP beta as a key regulator for DC maturation and immunogenic functionality under homeostatic and lymphoma-transformed conditions. Upon cell-specific deletion of C/EBP beta in CD11c(+)MHCII(hi) DCs, gene expression profiles of splenic C/EBP beta(-/-) DCs showed a down-regulation of E2F cell cycle target genes and associated proliferation signaling pathways, whereas maturation signatures were enriched. Total splenic DC cell numbers were modestly increased but differentiation into cDC1 and cDC2 subsets were unaltered. The splenic CD11c(+)MHCII(hi)CD64(+) DC compartment was also increased, suggesting that C/EBP beta deficiency favors the expansion of monocytic-derived DCs. Expression of C/EBP beta could be mimicked in LAP/LAP* isoform knockin DCs, whereas the short isoform LIP supported a differentiation program similar to deletion of the full-length TF. In accordance with E2F1 being a negative regulator of DC maturation, C/EBP beta(-/-) bone marrow-derived DCs matured much faster enabling them to activate and polarize T cells stronger. In contrast to a homeostatic condition, lymphoma-exposed DCs exhibited an up-regulation of the E2F transcriptional pathways and an impaired maturation. Pharmacological blockade of C/EBP beta/mTOR signaling in human DCs abrogated their protumorigenic function in primary B cell lymphoma cocultures. Thus, C/EBP beta plays a unique role in DC maturation and immunostimulatory functionality and emerges as a key factor of the tumor microenvironment that promotes lymphomagenesis

    Lymphoma Angiogenesis Is Orchestrated by Noncanonical Signaling Pathways

    Full text link
    Tumor-induced remodeling of the microenvironment relies on the formation of blood vessels, which go beyond the regulation of metabolism, shaping a maladapted survival niche for tumor cells. In high-grade B-cell lymphoma, angiogenesis correlates with poor prognosis, but attempts to target established proangiogenic pathways within the vascular niche have been inefficient. Here, we analyzed Myc-driven B-cell lymphoma-induced angiogenesis in mice. A few lymphoma cells were sufficient to activate the angiogenic switch in lymph nodes. A unique morphology of dense microvessels emerged without obvious tip cell guidance and reliance on blood endothelial cell (BEC) proliferation. The transcriptional response of BECs was inflammation independent. Conventional HIF1α or Notch signaling routes prevalent in solid tumors were not activated. Instead, a nonconventional hypersprouting morphology was orchestrated by lymphoma-provided VEGFC and lymphotoxin (LT). Interference with VEGF receptor-3 and LTβ receptor signaling pathways abrogated lymphoma angiogenesis, thus revealing targets to block lymphomagenesis. SIGNIFICANCE: In lymphoma, transcriptomes and morphogenic patterns of the vasculature are distinct from processes in inflammation and solid tumors. Instead, LTβR and VEGFR3 signaling gain leading roles and are targets for lymphomagenesis blockade.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/80/6/1316/F1.large.jpg.status: publishe

    Lymphoma Angiogenesis Is Orchestrated by Noncanonical Signaling Pathways

    Full text link
    Tumor-induced remodeling of the microenvironment relies on the formation of blood vessels, which go beyond the regulation of metabolism, shaping a maladapted survival niche for tumor cells. In high-grade B-cell lymphoma, angiogenesis correlates with poor prognosis, but attempts to target established proangiogenic pathways within the vascular niche have been inefficient. Here, we analyzed Myc-driven B-cell lymphoma-induced angiogenesis in mice. A few lymphoma cells were sufficient to activate the angiogenic switch in lymph nodes. A unique morphology of dense microvessels emerged without obvious tip cell guidance and reliance on blood endothelial cell (BEC) proliferation. The transcriptional response of BECs was inflammation independent. Conventional HIF1 alpha or Notch signaling routes prevalent in solid tumors were not activated. Instead, a nonconventional hypersprouting morphology was orchestrated by lymphoma-provided VEGFC and lymphotoxin (LT). Interference with VEGF receptor-3 and LT beta receptor signaling pathways abrogated lymphoma angiogenesis, thus revealing targets to block lymphomagenesis. Significance: In lymphoma, transcriptomes and morphogenic patterns of the vasculature are distinct from processes in inflammation and solid tumors. Instead, LTbR and VEGFR3 signaling gain leading roles and are targets for lymphomagenesis blockade
    corecore