2 research outputs found

    Multiplexed detection of cancer biomarkers using an optical biosensor

    Get PDF
    Early detection of cancer is important in administering timely treatment and increasing cancer survival rates. For early cancer detection one can use biomarkers, which are characteristics that can be objectively measured or evaluated as indicators of normal or pathogenic processes. In our study we study three protein biomarkers: carcinoembryonic antigen (CEA), interleukin-6 (IL-6) and extracellular protein kinase A (ECPKA), which have been implicated in various types of human cancer. The main objective of this project is to develop a biosensor for detection of multiple cancer biomarkers. To detect these protein biomarkers high affinity ssDNA aptamers are being selected. Aptamers are short single stranded DNAs with an ability to bind to various targets with high affinity and specificity which selected by SELEX (Systemic Evolution of Ligands through Exponential enrichment) [2]. Ultimately, aptamers against each of the biomarker will be conjugated to magnetic nanoparticles to capture biomarkers from biological fluids. Another aptamer is proposed to be conjugated to quantum dots for quantitation of biomarkers when analyzed on spectrometer

    Multiplexed detection of cancer biomarkers using an optical biosensor

    Get PDF
    Early detection of cancer is important in administering timely treatment and increasing cancer survival rates. For early cancer detection one can use biomarkers, which are characteristics that can be objectively measured or evaluated as indicators of normal or pathogenic processes. In our study we study three protein biomarkers: carcinoembryonic antigen (CEA), interleukin-6 (IL-6) and extracellular protein kinase A (ECPKA), which have been implicated in various types of human cancer. The main objective of this project is to develop a biosensor for detection of multiple cancer biomarkers. To detect these protein biomarkers high affinity ssDNA aptamers are being selected. Aptamers are short single stranded DNAs with an ability to bind to various targets with high affinity and specificity which selected by SELEX (Systemic Evolution of Ligands through Exponential enrichment) [2]. Ultimately, aptamers against each of the biomarker will be conjugated to magnetic nanoparticles to capture biomarkers from biological fluids. Another aptamer is proposed to be conjugated to quantum dots for quantitation of biomarkers when analyzed on spectrometer
    corecore