6 research outputs found

    Metallic behavior and related phenomena in two dimensions

    Full text link
    For about twenty years, it has been the prevailing view that there can be no metallic state or metal-insulator transition in two dimensions in zero magnetic field. In the last several years, however, unusual behavior suggestive of such a transition has been reported in a variety of dilute two-dimensional electron and hole systems. The physics behind these observations is presently not understood. We review and discuss the main experimental findings and suggested theoretical models.Comment: To be published in Rev. Mod. Phy

    Experimental Determination of Single Molecule Toroic Behaviour in a Dy8 Single-Molecule Magnet

    Get PDF
    The enhancement of toroic motifs through coupling toroidal moments within molecular nanomagnets is a new, interesting and relevant approach for both fundamental research and potential quantum computation applications. We investigate a Dy8 molecular cluster and discover it has a antiferrotoroic ground state with slow magnetic relaxation. The experimental characterization of the magnetic anisotropy axes of each magnetic center and their exchange interactions represents a considerable challenge due to the non-magnetic nature of the toroidal motif. To overcome this and obtain access to the low energy states of Dy8 we establish a multi-orientation single-crystal micro Hall sensor magnetometry approach. Using an effective Hamiltonian model we then unpick the microscopic spin structure of Dy8, leading to a canted antiferrotoroidic tetramer molecular ground state. These findings are supported with electrostatic calculations that independently confirm the experimentally determined magnetic anisotropy axes for each DyIII ion within the molecule
    corecore