39 research outputs found

    How Parents Search, Interpret, and Evaluate Genetic Information Obtained from the Internet

    Get PDF
    This study describes how parents of a child referred for genetic services searched the Internet for information, summarizes how they interpreted and evaluated the information they obtained, and identifies barriers that they encountered. Audio-taped interviews were conducted with 100 ethnically diverse families referred to a pediatric genetics clinic. After transcription, coded text was entered into a software program (QSR N6) for searching and data retrieval. Matrices were created to systematically categorize and compare families’ Internet use. Eighty-three percent of families obtained Internet information about the diagnosis, the clinic visit, and/or treatment and services. Those not conducting searches lacked access, Internet experience, or a diagnostic term and had lower incomes and less education, regardless of ethnicity. Families sought information in preparation for the clinic visit but barriers to obtaining and interpreting relevant information were common. Parents’ Internet searching experiences illustrate common barriers to obtaining and understanding genetic information. Identifying them can help genetic counselors facilitate parents’ searches for relevant information

    Genetic Information, Non-Discrimination, and Privacy Protections in Genetic Counseling Practice

    Get PDF
    The passage of the Genetic Information Non Discrimination Act (GINA) was hailed as a pivotal achievement that was expected to calm the fears of both patients and research participants about the potential misuse of genetic information. However, six years later, patient and provider awareness of legal protections at both the federal and state level remains discouragingly low, thereby, limiting their potential effectiveness. The increasing demand for genetic testing will expand the number of individuals and families who could benefit from obtaining accurate information about the privacy and anti-discriminatory protections that GINA and other laws extend. In this paper we describe legal protections that are applicable to individuals seeking genetic counseling, review the literature on patient and provider fears of genetic discrimination and examine their awareness and understandings of existing laws, and summarize how genetic counselors currently discuss genetic discrimination. We then present three genetic counseling cases to illustrate issues of genetic discrimination and provide relevant information on applicable legal protections. Genetic counselors have an unprecedented opportunity, as well as the professional responsibility, to disseminate accurate knowledge about existing legal protections to their patients. They can strengthen their effectiveness in this role by achieving a greater knowledge of current protections including being able to identify specific steps that can help protect genetic information

    “Not Tied Up Neatly with a Bow”: Professionals’ Challenging Cases in Informed Consent for Genomic Sequencing

    Get PDF
    As the use of genomic technology has expanded in research and clinical settings, issues surrounding informed consent for genome and exome sequencing have surfaced. Despite the importance of informed consent, little is known about the specific challenges that professionals encounter when consenting patients or research participants for genomic sequencing. We interviewed 29 genetic counselors and research coordinators with considerable experience obtaining informed consent for genomic sequencing to understand their experiences and perspectives. As part of this interview, 24 interviewees discussed an informed consent case they found particularly memorable or challenging. We analyzed these case examples to determine the primary issue or challenge represented by each case. Challenges fell into two domains: participant understanding, and facilitating decisions about testing or research participation. Challenges related to participant understanding included varying levels of general and genomic literacy, difficulty managing participant expectations, and contextual factors that impeded participant understanding. Challenges related to facilitating decision-making included complicated family dynamics such as disagreement or coercion, situations in which it was unclear whether sequencing research would be a good use of participant time or resources, and situations in which the professional experienced disagreement or discomfort with participant decisions. The issues highlighted in these case examples are instructive in preparing genetics professionals to obtain informed consent for genomic sequencing

    Supporting Parental Decisions About Genomic Sequencing for Newborn Screening: The NC NEXUS Decision Aid

    Get PDF
    Advances in genomic sequencing technology have raised fundamental challenges to the traditional ways genomic information is communicated. These challenges will become increasingly complex and will affect a much larger population in the future if genomics is incorporated into standard newborn screening practice. Clinicians, public health officials, and other stakeholders will need to agree on the types of information that they should seek and communicate to parents. Currently, few evidence-based and validated tools are available to support parental informed decision-making. These tools will be necessary as genomics is integrated into clinical practice and public health systems. In this article we describe how the North Carolina Newborn Exome Sequencing for Universal Screening study is addressing the need to support parents in making informed decisions about the use of genomic testing in newborn screening. We outline the context for newborn screening and justify the need for parental decision support. We also describe the process of decision aid development and the data sources, processes, and best practices being used in development. By the end of the study, we will have an evidenced-based process and validated tools to support parental informed decision-making about the use of genomic sequencing in newborn screening. Data from the study will help answer important questions about which genomic information ought to be sought and communicated when testing newborns

    How Can Psychological Science Inform Research About Genetic Counseling for Clinical Genomic Sequencing?

    Get PDF
    Next generation genomic sequencing technologies (including whole genome or whole exome sequencing) are being increasingly applied to clinical care. Yet, the breadth and complexity of sequencing information raise questions about how best to communicate and return sequencing information to patients and families in ways that facilitate comprehension and optimal health decisions. Obtaining answers to such questions will require multidisciplinary research. In this paper, we focus on how psychological science research can address questions related to clinical genomic sequencing by explaining emotional, cognitive, and behavioral processes in response to different types of genomic sequencing information (e.g., diagnostic results and incidental findings). We highlight examples of psychological science that can be applied to genetic counseling research to inform the following questions: (1) What factors influence patients’ and providers’ informational needs for developing an accurate understanding of what genomic sequencing results do and do not mean?; (2) How and by whom should genomic sequencing results be communicated to patients and their family members?; and (3) How do patients and their families respond to uncertainties related to genomic information?Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147034/1/jgc40193.pd

    Is “incidental finding” the best term?: a study of patients’ preferences

    Get PDF
    There is debate within the genetics community about the optimal term to describe genetic variants unrelated to the test indication, but potentially important for health. Given the lack of consensus and the importance of adopting terminology that promotes effective clinical communication, we sought the opinion of clinical genetics patients

    A semiquantitative metric for evaluating clinical actionability of incidental or secondary findings from genome-scale sequencing

    Get PDF
    As genome-scale sequencing is increasingly applied in clinical scenarios, a wide variety of genomic findings will be discovered as secondary or incidental findings, and there is debate about how they should be handled. The clinical actionability of such findings varies, necessitating standardized frameworks for a priori decision making about their analysis

    Evaluating parents’ decisions about next-generation sequencing for their child in the NC NEXUS (North Carolina Newborn Exome Sequencing for Universal Screening) study: a randomized controlled trial protocol

    Get PDF
    Abstract Background Using next-generation sequencing (NGS) in newborn screening (NBS) could expand the number of genetic conditions detected pre-symptomatically, simultaneously challenging current precedents, raising ethical concerns, and extending the role of parental decision-making in NBS. The NC NEXUS (Newborn Exome Sequencing for Universal Screening) study seeks to assess the technical possibilities and limitations of NGS-NBS, devise and evaluate a framework to convey various types of genetic information, and develop best practices for incorporating NGS-NBS into clinical care. The study is enrolling both a healthy cohort and a cohort diagnosed with known disorders identified through recent routine NBS. It uses a novel age-based metric to categorize a priori the large amount of data generated by NGS-NBS and interactive online decision aids to guide parental decision-making. Primary outcomes include: (1) assessment of NGS-NBS sensitivity, (2) decision regret, and (3) parental decision-making about NGS-NBS, and, for parents randomized to have the option of requesting them, additional findings (diagnosed and healthy cohorts). Secondary outcomes assess parents’ reactions to the study and to decision-making. Methods/design Participants are parents and children in a well-child cohort recruited from a prenatal clinic and a diagnosed cohort recruited from pediatric clinics that treat children with disorders diagnosed through traditional NBS (goal of 200 children in each cohort). In phase 1, all parent participants use an online decision aid to decide whether to accept NGS-NBS for their child and provide consent for NGS-NBS. In phase 2, parents who consent to NGS-NBS are randomized to a decision arm or control arm (2:1 allocation) and learn their child’s NGS-NBS results, which include conditions from standard (non-NGS) NBS plus other highly actionable childhood-onset conditions. Parents in the decision arm use a second decision aid to make decisions about additional results from their child’s sequencing. In phase 3, decision arm participants learn additional results they have requested. Online questionnaires are administered at up to five time points. Discussion NC NEXUS will use a rigorous interdisciplinary approach designed to collect rich data to inform policy, practice, and future research. Trial registration clinicaltrials.gov, NCT02826694 . Registered on 11 July, 2016

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
    corecore