2 research outputs found

    Sonochemically fabricated microelectrode arrays for biosensors. Part II. Modification with a polysiloxane coating

    Get PDF
    A polymer modified sonochemically fabricated glucose oxidase microelectrode array with microelectrode population densities of up to 2.5 x 105 microelectrodes cm-2 is reported. These microelectrode sensors were formed by first depositing an insulating film on commercial screen printed electrodes which was subsequently sonicated to form cavities of regular sizes in the film. Electropolymerisation of aniline at the microelectrode cavities formed polyaniline protrusions containing entrapped glucose oxidase. Chemical deposition of polysiloxane from dichlorodimethysilane was used to deposit a thin protective and diffusion mass transport controlling coating over the electrodes. The physical and electrochemical properties of these films were studied. The performance of the final glucose oxidase based microelectrode sensor array is reported

    Sonochemically fabricated microelectrode arrays for biosensors offering widespread applicability. Part I

    Get PDF
    A novel and patented procedure is described for the sonochemical fabrication of a new class of microelectrode array based sensor with electrode element populations of up to 2 x 105 cm-2. For some years it has been accepted that microelectrode arrays offer an attractive route for lowering minimum limits of detection and imparting stir (convectional mass transport) independence to sensor responses; despite this no commercial biosensors, to date, have employed microelectrode arrays, largely due to the cost of conventional fabrication routes that have not proved commercially viable for disposable devices. Biosensors formed by our sonochemical approach offer unrivalled sensitivity and impart stir independence to sensor responses. This format lends itself for mass fabrication due to the simplicity and inexpensiveness of the approach; in the first instance impedimetric and amperometric sensors are reported for glucose as model systems. Sensors already developed for ethanol, oxalate and a number of pesticide determinations will be reported in subsequent publications
    corecore