789 research outputs found
Precise measurements of radio-frequency magnetic susceptibility in (anti)ferromagnetic materials
Dynamic magnetic susceptibility, , was studied in several intermetallic
materials exhibiting ferromagnetic, antiferromagnetic and metamagnetic
transitions. Precise measurements by using a 14 MHz tunnel diode oscillator
(TDO) allow detailed insight into the field and temperature dependence of
. In particular, local moment ferromagnets show a sharp peak in
near the Curie temperature, . The peak amplitude decreases and shifts to
higher temperatures with very small applied dc fields. Anisotropic measurements
of CeVSb show that this peak is present provided the magnetic easy axis is
aligned with the excitation field. In a striking contrast, small moment,
itinerant ferromagnets (i.e., ZrZn) show a broad maximum in that
responds differently to applied field. We believe that TDO measurements provide
a very sensitive way to distinguish between local and itinerant moment magnetic
orders. Local moment antiferromagnets do not show a peak at the N\'eel
temperature, , but only a sharp decrease of below due to the
loss of spin-disorder scattering changing the penetration depth of the ac
excitation field. Furthermore, we show that the TDO is capable of detecting
changes in spin order as well as metamagnetic transitions. Finally, critical
scaling of in the vicinity of is discussed in CeVSb and
CeAgSb
Anatomy of Spin-Transfer Torque
Spin-transfer torques occur in magnetic heterostructures because the
transverse component of a spin current that flows from a non-magnet into a
ferromagnet is absorbed at the interface. We demonstrate this fact explicitly
using free electron models and first principles electronic structure
calculations for real material interfaces. Three distinct processes contribute
to the absorption: (1) spin-dependent reflection and transmission; (2) rotation
of reflected and transmitted spins; and (3) spatial precession of spins in the
ferromagnet. When summed over all Fermi surface electrons, these processes
reduce the transverse component of the transmitted and reflected spin currents
to nearly zero for most systems of interest. Therefore, to a good
approximation, the torque on the magnetization is proportional to the
transverse piece of the incoming spin current.Comment: 16 pages, 8 figures, submitted to Phys. Rev.
Current induced switching of magnetic domains to a perpendicular configuration
In a ferromagnet--normal-metal--ferromagnet trilayer, a current flowing
perpendicularly to the layers creates a torque on the magnetic moments of the
ferromagnets. When one of the contacts is superconducting, the torque not only
favors parallel or antiparallel alignment of the magnetic moments, as is the
case for two normal contacts, but can also favor a configuration where the two
moments are perpendicular. In addition, whereas the conductance for parallel
and antiparallel magnetic moments is the same, signalling the absence of giant
magnetoresistance in the usual sense, the conductance is greater in the
perpendicular configuration. Thus, a negative magnetoconductance is predicted,
in contrast with the usual giant magnetoresistance.Comment: 4 pages, 3 figures, major rewriting of the technical par
Theory of Current-Induced Magnetization Precession
We solve appropriate drift-diffusion and Landau-Lifshitz-Gilbert equations to
demonstrate that unpolarized current flow from a non-magnet into a ferromagnet
can produce a precession-type instability of the magnetization. The fundamental
origin of the instability is the difference in conductivity between majority
spins and minority spins in the ferromagnet. This leads to spin accumulation
and spin currents that carry angular momentum across the interface. The
component of this angular momentum perpendicular to the magnetization drives
precessional motion that is opposed by Gilbert damping. Neglecting magnetic
anisotropy and magnetostatics, our approximate analytic and exact numerical
solutions using realistic values for the material parameters show (for both
semi-infinite and thin film geometries) that a linear instability occurs when
both the current density and the excitation wave vector parallel to the
interface are neither too small nor too large. For many aspects of the problem,
the variation of the magnetization in the direction of the current flows makes
an important contribution.Comment: Submitted to Physical Review
Magnetization dynamics with a spin-transfer torque
The magnetization reversal and dynamics of a spin valve pillar, whose lateral
size is 6464 nm, are studied by using micromagnetic simulation in
the presence of spin transfer torque. Spin torques display both characteristics
of magnetic damping (or anti-damping) and of an effective magnetic field. For a
steady-state current, both M-I and M-H hysteresis loops show unique features,
including multiple jumps, unusual plateaus and precessional states. These
states originate from the competition between the energy dissipation due to
Gilbert damping and the energy accumulation due to the spin torque supplied by
the spin current. The magnetic energy oscillates as a function of time even for
a steady-state current. For a pulsed current, the minimum width and amplitude
of the spin torque for achieving current-driven magnetization reversal are
quantitatively determined. The spin torque also shows very interesting thermal
activation that is fundamentally different from an ordinary damping effect.Comment: 15 figure
Crohn's and Colitis Foundation of America Partners Patient-Powered Research Network
Background: To build a Patient-Powered Research Networks (PPRN) that prioritizes the needs of its members who have inflammatory bowel diseases (IBD), we sought to better understand patients' preferences for what are the essential features that will facilitate and sustain engagement. Methods: We conducted a two-phase qualitative study. Seven focus groups involving 62 participants with IBD were conducted (phase 1). Focus group results informed the phase 2 cognitive interviews, which included 13 phone interviews. Topics included experiences with IBD and research, PPRN engagement, patient-generated health data, and resources/tools to facilitate self-management. All focus groups and interviews were digitally recorded, transcribed verbatim, and analyzed in ATLAS.ti 7.5. Thematic categories were derived from the data, and codes were grouped into emergent themes and relationships. Results: Four major themes emerged through inductive coding: (1) the impact of knowing; (2) participation barriers and challenges; (3) engagement and collaboration; and (4) customizable patient portal features/functionalities. Participants were motivated to participate in the PPRN because the knowledge gained from research studies would benefit both society and the individual. Main concerns included credibility of online resources, pharmaceutical industry profiting from their data, data security, and participation expectations. Participants wanted a true and equal partnership in every phase of building a PPRN. Participants felt it was important to have access to personal health records and be able to track health status and symptoms. Conclusion: Partnering with participants throughout PPRN development was critical to understanding the needs and preferences of patients with IBDs and for shaping engagement strategies and the portal's design
Magnetic exchange interaction induced by a Josephson current
We show that a Josephson current flowing through a
ferromagnet-normal-metal-ferromagnet trilayer connected to two superconducting
electrodes induces an equilibrium exchange interaction between the magnetic
moments of the ferromagnetic layers. The sign and magnitude of the interaction
can be controlled by the phase difference between the order parameters of the
two superconductors. We present a general framework to calculate the Josephson
current induced magnetic exchange interaction in terms of the scattering
matrices of the different layers. The effect should be observable as the
periodic switching of the relative orientation of the magnetic moments of the
ferromagnetic layers in the ac Josephson effect.Comment: 12 pages, 7 figure
- …