278 research outputs found
The Mechanism Underlying Transient Weakness in Myotonia Congenita
In addition to the hallmark muscle stiffness, patients with recessive myotonia congenita (Becker disease) experience debilitating bouts of transient weakness that remain poorly understood despite years of study. We performed intracellular recordings from muscle of both genetic and pharmacologic mouse models of Becker disease to identify the mechanism underlying transient weakness. Our recordings reveal transient depolarizations (plateau potentials) of the membrane potential to -25 to -35 mV in the genetic and pharmacologic models of Becker disease. Both Na + and Ca 2+ currents contribute to plateau potentials. Na + persistent inward current (NaPIC) through Na V 1.4 channels is the key trigger of plateau potentials and current through Ca V 1.1 Ca 2+ channels contributes to the duration of the plateau. Inhibiting NaPIC with ranolazine prevents the development of plateau potentials and eliminates transient weakness in vivo. These data suggest that targeting NaPIC may be an effective treatment to prevent transient weakness in myotonia congenita
Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial
Background Previous prospective cohort studies have shown that angiogenic factors have a high diagnostic accuracy in women with suspected pre-eclampsia, but we remain uncertain of the effectiveness of these tests in a real-world setting. We therefore aimed to determine whether knowledge of the circulating concentration of placental growth factor (PlGF), an angiogenic factor, integrated with a clinical management algorithm, decreased the time for clinicians to make a diagnosis in women with suspected pre-eclampsia, and whether this approach reduced subsequent maternal or perinatal adverse outcomes. Methods We did a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial in 11 maternity units in the UK, which were each responsible for 3000–9000 deliveries per year. Women aged 18 years and older who presented with suspected pre-eclampsia between 20 weeks and 0 days of gestation and 36 weeks and 6 days of gestation, with a live, singleton fetus were invited to participate by the clinical research team. Suspected pre-eclampsia was defined as new-onset or worsening of existing hypertension, dipstick proteinuria, epigastric or right upper-quadrant pain, headache with visual disturbances, fetal growth restriction, or abnormal maternal blood tests that were suggestive of disease (such as thrombocytopenia or hepatic or renal dysfunction). Women were approached individually, they consented for study inclusion, and they were asked to give blood samples. We randomly allocated the maternity units, representing the clusters, to blocks. Blocks represented an intervention initiation time, which occurred at equally spaced 6-week intervals throughout the trial. At the start of the trial, all units had usual care (in which PlGF measurements were also taken but were concealed from clinicians and women). At the initiation time of each successive block, a site began to use the intervention (in which the circulating PlGF measurement was revealed and a clinical management algorithm was used). Enrolment of women continued for the duration of the blocks either to concealed PlGF testing, or after implementation, to revealed PlGF testing. The primary outcome was the time from presentation with suspected pre-eclampsia to documented pre-eclampsia in women enrolled in the trial who received a diagnosis of pre-eclampsia by their treating clinicians. This trial is registered with ISRCTN, number 16842031. Findings Between June 13, 2016, and Oct 27, 2017, we enrolled and assessed 1035 women with suspected pre-eclampsia. 12 (1%) women were found to be ineligible. Of the 1023 eligible women, 576 (56%) women were assigned to the intervention (revealed testing) group, and 447 (44%) women were assigned to receive usual care with additional concealed testing (concealed testing group). Three (1%) women in the revealed testing group were lost to follow-up, so 573 (99%) women in this group were included in the analyses. One (99%) women in this group were included in the analyses. The median time to pre-eclampsia diagnosis was 4·1 days with concealed testing versus 1·9 days with revealed testing (time ratio 0·36, 95% CI 0·15–0·87; p=0·027). Maternal severe adverse outcomes were reported in 24 (5%) of 447 women in the concealed testing group versus 22 (4%) of 573 women in the revealed testing group (adjusted odds ratio 0·32, 95% CI 0·11–0·96; p=0·043), but there was no evidence of a difference in perinatal adverse outcomes (15% vs 14%, 1·45, 0·73–2·90) or gestation at delivery (36·6 weeks vs 36·8 weeks; mean difference −0·52, 95% CI −0·63 to 0·73). Interpretation We found that the availability of PlGF test results substantially reduced the time to clinical confirmation of pre-eclampsia. Where PlGF was implemented, we found a lower incidence of maternal adverse outcomes, consistent with adoption of targeted, enhanced surveillance, as recommended in the clinical management algorithm for clinicians. Adoption of PlGF testing in women with suspected pre-eclampsia is supported by the results of this study
A Novel, Enriched Population Pharmacokinetic Model for Recombinant Factor VIII-Fc Fusion Protein Concentrate in Hemophilia A Patients
Background The currently published population pharmacokinetic (PK) models used for PK-guided dosing in hemophilia patients are based on clinical trial data and usually not externally validated in clinical practice. The aim of this study was to validate a published model for recombinant factor VIII-Fc fusion protein (rFVIII-Fc) concentrate and to develop an enriched model using independently collected clinical data if required. Methods Clinical data from hemophilia A patients treated with rFVIII-Fc concentrate (Elocta) participating in the United Kingdom Extended Half-Life Outcomes Registry were collected. The predictive performance of the published model was assessed using mean percentage error (bias) and mean absolute percentage error (inaccuracy). An extended population PK model was developed using nonlinear mixed-effects modeling (NONMEM). Results A total of 43 hemophilia A patients (FVIII Conclusion We concluded that the existing rFVIII-Fc population PK model is valid for patients >= 12 years. However, it is not reliable in younger patients. Our alternative model, constructed from real world patient data including children, allows for better description of patients >= 5 years
Nacre tablet thickness records formation temperature in modern and fossil shells
Nacre, the iridescent outer lining of pearls and inner lining of many mollusk shells, is composed of periodic, parallel, organic sheets alternating with aragonite (CaCO_3) tablet layers. Nacre tablet thickness (TT) generates both nacre's iridescence and its remarkable resistance to fracture. Despite extensive studies on how nacre forms, the mechanisms controlling TT remain unknown, even though they determine the most conspicuous of nacre's characteristics, visible even to the naked eye.
Thermodynamics predicts that temperature (T) will affect both physical and chemical components of biomineralized skeletons. The chemical composition of biominerals is well-established to record environmental parameters, and has therefore been extensively used in paleoclimate studies. The physical structure, however, has been hypothesized but never directly demonstrated to depend on the environment. Here we observe that the physical TT in nacre from modern and fossil shallow-water shells of the bivalves Pinna and Atrina correlates with T as measured by the carbonate clumped isotope thermometer. Based on the observed TT vs. T correlation, we anticipate that TT will be used as a paleothermometer, useful to estimate paleotemperature in shallow-water paleoenvironments. Here we successfully test the proposed new nacre TT thermometer on two Jurassic Pinna shells. The increase of TT with T is consistent with greater aragonite growth rate at higher T, and with greater metabolic rate at higher T. Thus, it reveals a complex, T-dependent biophysical mechanism for nacre formation
The SDSS-III Baryon Oscillation Spectroscopic Survey: Quasar Target Selection for Data Release Nine
The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year
spectroscopic survey of 10,000 deg^2, achieved first light in late 2009. One of
the key goals of BOSS is to measure the signature of baryon acoustic
oscillations in the distribution of Ly-alpha absorption from the spectra of a
sample of ~150,000 z>2.2 quasars. Along with measuring the angular diameter
distance at z\approx2.5, BOSS will provide the first direct measurement of the
expansion rate of the Universe at z > 2. One of the biggest challenges in
achieving this goal is an efficient target selection algorithm for quasars over
2.2 < z < 3.5, where their colors overlap those of stars. During the first year
of the BOSS survey, quasar target selection methods were developed and tested
to meet the requirement of delivering at least 15 quasars deg^-2 in this
redshift range, out of 40 targets deg^-2. To achieve these surface densities,
the magnitude limit of the quasar targets was set at g <= 22.0 or r<=21.85.
While detection of the BAO signature in the Ly-alpha absorption in quasar
spectra does not require a uniform target selection, many other astrophysical
studies do. We therefore defined a uniformly-selected subsample of 20 targets
deg^-2, for which the selection efficiency is just over 50%. This "CORE"
subsample will be fixed for Years Two through Five of the survey. In this paper
we describe the evolution and implementation of the BOSS quasar target
selection algorithms during the first two years of BOSS operations. We analyze
the spectra obtained during the first year. 11,263 new z>2.2 quasars were
spectroscopically confirmed by BOSS. Our current algorithms select an average
of 15 z > 2.2 quasars deg^-2 from 40 targets deg^-2 using single-epoch SDSS
imaging. Multi-epoch optical data and data at other wavelengths can further
improve the efficiency and completeness of BOSS quasar target selection.
[Abridged]Comment: 33 pages, 26 figures, 12 tables and a whole bunch of quasars.
Submitted to Ap
Human-specific histone methylation signatures at transcription start sites in prefrontal neurons
Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5-1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans
Pyrite-walled tube structures in a Mesoproterozoic sediment-hosted metal sulfide deposit
Unusual decimeter-scale structures occur in the sediment-hosted Black Butte Copper Mine Project deposit within lower Mesoproterozoic strata of the Belt Supergroup, Montana. These low domal and stratiform lenses are made up of millimeter-scale, hollow or mineral-filled tubes bounded by pyrite walls. X-ray micro−computed tomography (micro-CT) shows that the tube structures are similar to the porous fabric of modern diffuse hydrothermal vents, and they do not resemble textures associated with the mineralization of known microbial communities. We determined the sulfur isotopic composition of sulfide minerals with in situ secondary ion mass spectrometry (SIMS) and of texture-specific sulfate phases with multicollector−inductively coupled plasma−mass spectrometry (MC-ICP-MS). The sedimentological setting, ore paragenesis, sulfur isotope systematics, and porosity structure of these porous precipitates constrain the site of their formation to above the sediment-water interface where metalliferous hydrothermal fluids vented into the overlying water column. These data constrain the geochemistry of the Mesoproterozoic sediment-water interface and the site of deposition for copper-cobalt-silver mineralization. Metals in the hydrothermal fluids titrated sulfide in seawater to create tortuous fluid-flow conduits. Pyrite that precipitated at the vent sites exhibits large sulfur isotope fractionation (>50‰), which indicates a close association between the vents and sulfate-reducing microbiota. In the subsurface, base metal sulfides precipitated from sulfide formed during the reduction of early diagenetic barite, also ultimately derived from seawater. This model suggests dynamic bottom-water redox conditions at the vent site driven by the interplay between sulfate-reducing organisms and metalliferous fluid effluence
Empirical Power and Sample Size Calculations for Cluster-Randomized and Cluster-Randomized Crossover Studies
In recent years, the number of studies using a cluster-randomized design has grown dramatically. In addition, the cluster-randomized crossover design has been touted as a methodological advance that can increase efficiency of cluster-randomized studies in certain situations. While the cluster-randomized crossover trial has become a popular tool, standards of design, analysis, reporting and implementation have not been established for this emergent design. We address one particular aspect of cluster-randomized and cluster-randomized crossover trial design: estimating statistical power. We present a general framework for estimating power via simulation in cluster-randomized studies with or without one or more crossover periods. We have implemented this framework in the clusterPower software package for R, freely available online from the Comprehensive R Archive Network. Our simulation framework is easy to implement and users may customize the methods used for data analysis. We give four examples of using the software in practice. The clusterPower package could play an important role in the design of future cluster-randomized and cluster-randomized crossover studies. This work is the first to establish a universal method for calculating power for both cluster-randomized and cluster-randomized clinical trials. More research is needed to develop standardized and recommended methodology for cluster-randomized crossover studies
- …