119 research outputs found

    Using impact asthma echo to influence physician self-efficacy and guideline adherence

    Get PDF
    The purpose of this study was to examine the influence on provider self-efficacy and guideline adherence as a result of participation in Impact Asthma ECHO. The researcher addressed the following research questions: How does participation in Impact Asthma ECHO influence primary care provider self-efficacy? How does engagement in the learning activities of Impact Asthma ECHO promote clinical guideline adherence? Participants included 19 Primary Care providers participating in Impact Asthma ECHO via online video-conferencing. The researcher utilized a data-triangulation method, collecting data via self-efficacy surveys, Continuing Medical Education surveys, a Community of Inquiry coding template, and Medicaid Claims Data. While findings of the study were limited by a relatively small subset of participants, the significant contribution of the present research is the utilization of the modified Community of Inquiry coding template for the purposes of evaluating group engagement and learning in a synchronous, web-based videoconferencing educational session.Includes bibliographical reference

    SUMO targeting of a stress-tolerant Ulp1 SUMO protease

    Get PDF
    SUMO proteases of the SENP/Ulp family are master regulators of both sumoylation and desumoylation and regulate SUMO homeostasis in eukaryotic cells. SUMO conjugates rapidly increase in response to cellular stress, including nutrient starvation, hypoxia, osmotic stress, DNA damage, heat shock, and other proteotoxic stressors. Nevertheless, little is known about the regulation and targeting of SUMO proteases during stress. To this end we have undertaken a detailed comparison of the SUMO-binding activity of the budding yeast protein Ulp1 (ScUlp1) and its ortholog in the thermotolerant yeast Kluyveromyces marxianus, KmUlp1. We find that the catalytic UD domains of both ScUlp1 and KmUlp1 show a high degree of sequence conservation, complement a ulp1 Delta mutant in vivo, and process a SUMO precursor in vitro. Next, to compare the SUMO-trapping features of both SUMO proteases we produced catalytically inactive recombinant fragments of the UD domains of ScUlp1 and KmUlp1, termed ScUTAG and KmUTAG respectively. Both ScUTAG and KmUTAG were able to efficiently bind a variety of purified SUMO isoforms and bound immobilized SUMO1 with nanomolar affinity. However, KmUTAG showed a greatly enhanced ability to bind SUMO and SUMO-modified proteins in the presence of oxidative, temperature and other stressors that induce protein misfolding. We also investigated whether a SUMO-interacting motif (SIM) in the UD domain of KmULP1 that is not conserved in ScUlp1 may contribute to the SUMO-binding properties of KmUTAG. In summary, our data reveal important details about how SUMO proteases target and bind their sumoylated substrates, especially under stress conditions. We also show that the robust pan-SUMO binding features of KmUTAG can be exploited to detect and study SUMO-modified proteins in cell culture systems

    The renormalization group and spontaneous compactification of a higher-dimensional scalar field theory in curved spacetime

    Get PDF
    The renormalization group (RG) is used to study the asymptotically free ϕ63\phi_6^3-theory in curved spacetime. Several forms of the RG equations for the effective potential are formulated. By solving these equations we obtain the one-loop effective potential as well as its explicit forms in the case of strong gravitational fields and strong scalar fields. Using zeta function techniques, the one-loop and corresponding RG improved vacuum energies are found for the Kaluza-Klein backgrounds R4×S1×S1R^4\times S^1\times S^1 and R4×S2R^4\times S^2. They are given in terms of exponentially convergent series, appropriate for numerical calculations. A study of these vacuum energies as a function of compactification lengths and other couplings shows that spontaneous compactification can be qualitatively different when the RG improved energy is used.Comment: LaTeX, 15 pages, 4 figure

    Vilkovisky-DeWitt Effective Action for Einstein Gravity on Kaluza-Klein Spacetimes M4×SNM^4\times S^N

    Full text link
    We evaluate the divergent part of the Vilkovisky-DeWitt effective action for Einstein gravity on even-dimensional Kaluza-Klein spacetimes of the form M4×SNM^{4}\times S^{N}. Explicit results are given for NN=2, 4, and 6. Trace anomalies for gravitons are also given for these cases. Stable Kaluza-Klein configurations are sought, unsuccessfully, assuming the divergent part of the effective action dominates the dynamics.Comment: 37 pages, no figure

    A molten globule-to-ordered structure transition of Drosophila melanogaster crammer is required for its ability to inhibit cathepsin

    Get PDF
    Drosophila melanogaster crammer is a novel cathepsin inhibitor that is involved in LTM (long-term memory) formation. The mechanism by which the inhibitory activity is regulated remains unclear. In the present paper we have shown that the oligomeric state of crammer is pH dependent. At neutral pH, crammer is predominantly dimeric in vitro as a result of disulfide bond formation, and is monomeric at acidic pH. Our inhibition assay shows that monomeric crammer, not disulfide-bonded dimer, is a strong competitive inhibitor of cathepsin L. Crammer is a monomeric molten globule in acidic solution, a condition that is similar to the environment in the lysosome where crammer is probably located. Upon binding to cathepsin L, however, crammer undergoes a molten globule-to-ordered structural transition. Using high-resolution NMR spectroscopy, we have shown that a cysteine-to-serine point mutation at position 72 (C72S) renders crammer monomeric at pH 6.0 and that the structure of the C72S variant highly resembles that of wild-type crammer in complex with cathepsin L at pH 4.0. We have determined the first solution structure of propeptide-like protease inhibitor in its active form and examined in detail using a variety of spectroscopic methods the folding properties of crammer in order to delineate its biomolecular recognition of cathepsin

    The Mid-infrared Instrument for JWST and Its In-flight Performance

    Get PDF
    The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 ÎŒm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∌ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI

    Cross-cutting principles for planetary health education

    Get PDF
    Since the 2015 launch of the Rockefeller Foundation Lancet Commission on planetary health,1 an enormous groundswell of interest in planetary health education has emerged across many disciplines, institutions, and geographical regions. Advancing these global efforts in planetary health education will equip the next generation of scholars to address crucial questions in this emerging field and support the development of a community of practice. To provide a foundation for the growing interest and efforts in this field, the Planetary Health Alliance has facilitated the first attempt to create a set of principles for planetary health education that intersect education at all levels, across all scales, and in all regions of the world—ie, a set of cross-cutting principles

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys
    • 

    corecore