16 research outputs found

    A Dark Matter Hurricane: Measuring the S1 Stream with Dark Matter Detectors

    Get PDF
    The recently discovered S1 stream passes through the Solar neighbourhood on a low inclination, counter-rotating orbit. The progenitor of S1 is a dwarf galaxy with a total mass comparable to the present-day Fornax dwarf spheroidal, so the stream is expected to have a significant DM component. We compute the effects of the S1 stream on WIMP and axion detectors as a function of the density of its unmeasured dark component. In WIMP detectors the S1 stream supplies more high energy nuclear recoils so will marginally improve DM detection prospects. We find that even if S1 comprises less than 10% of the local density, multi-ton xenon WIMP detectors can distinguish the S1 stream from the bulk halo in the relatively narrow mass range between 5 and 25 GeV. In directional WIMP detectors such as CYGNUS, S1 increases DM detection prospects more substantially since it enhances the anisotropy of the WIMP signal. Finally, we show that axion haloscopes possess by far the greatest potential sensitivity to the S1 stream. Once the axion mass has been discovered, the distinctive velocity distribution of S1 can easily be extracted from the axion power spectrum.Comment: 21 pages, 11 figure

    Peeking beneath the precision floor -- II. Probing the chemo-dynamical histories of the potential globular cluster siblings, NGC 288 and NGC 362

    Full text link
    The assembly history of the Milky Way (MW) is a rapidly evolving subject, with numerous small accretion events and at least one major merger proposed in the MW's history. Accreted alongside these dwarf galaxies are globular clusters (GCs), which act as spatially coherent remnants of these past events. Using high precision differential abundance measurements from our recently published study, we investigate the likelihood that the MW clusters NGC 362 and NGC 288 are galactic siblings, accreted as part of the Gaia-Sausage-Enceladus (GSE) merger. To do this, we compare the two GCs at the 0.01 dex level for 20+ elements for the first time. Strong similarities are found, with the two showing chemical similarity on the same order as those seen between the three LMC GCs, NGC 1786, NGC 2210 and NGC 2257. However, when comparing GC abundances directly to GSE stars, marked differences are observed. NGC 362 shows good agreement with GSE stars in the ratio of Eu to Mg and Si, as well as a clear dominance in the r- compared to the s-process, while NGC 288 exhibits only a slight r-process dominance. When fitting the two GC abundances with a GSE-like galactic chemical evolution model, NGC 362 shows agreement with both the model predictions and GSE abundance ratios (considering Si, Ni, Ba and Eu) at the same metallicity. This is not the case for NGC 288. We propose that the two are either not galactic siblings, or GSE was chemically inhomogeneous enough to birth two similar, but not identical clusters with distinct chemistry relative to constituent stars.Comment: Second paper in a series. Accepted for publication by MNRAS, 17 pages, 11 figure
    corecore