737 research outputs found
Finite spin-glass transition of the XY model in three dimensions
A three-dimensional XY spin-glass model is investigated by a
nonequilibrium relaxation method. We have introduced a new criterion for the
finite-time scaling analysis. A transition temperature is obtained by a
crossing point of obtained data. The scaling analysis on the relaxation
functions of the spin-glass susceptibility and the chiral-glass susceptibility
shows that both transitions occur simultaneously. The result is checked by
relaxation functions of the Binder parameters and the glass correlation lengths
of the spin and the chirality. Every result is consistent if we consider that
the transition is driven by the spin degrees of freedom.Comment: 11 pages, 8 figures, incorrect arguments are delete
Hidden Order in
We review current attempts to characterize the underlying nature of the
hidden order in . A wide variety of experiments point to the
existence of two order parameters: a large primary order parameter of unknown
character which co-exists with secondary antiferromagnetic order. Current
theories can be divided into two groups determined by whether or not the
primary order parameter breaks time-reversal symmetry. We propose a series of
experiments designed to test the time-reversal nature of the underlying primary
order in and to characterize its local single-ion physics
Spin-glass-like state in GdCu: role of phase separation and magnetic frustration
We report investigations on the ground state magnetic properties of
intermetallic compound GdCu through dc magnetization measurements. GdCu
undergoes first order martensitic type structural transition over a wide
temperature window of coexisting phases. The high temperature cubic and the low
temperature orthorhombic phases have different magnetic character and they show
antiferromagnetic and helimagnetic orderings below 145 K and 45 K respectively.
We observe clear signature of a glassy magnetic phase below the helimagnetic
ordering temperature, which is marked by thermomagnetic irreversibility, aging
and memory effects. The glassy magnetic phase in GdCu is found to be rather
intriguing with its origin lies in the interfacial frustration due to distinct
magnetic character of the coexisting phases.Comment: Physical Review B 83, 134427 (2011
Contrasting the magnetic response between magnetic-glass and reentrant spin-glass
Magnetic-glass is a recently identified phenomenon in various classes of
magnetic systems undergoing a first order magnetic phase transition. We shall
highlight here a few experimentally determined characteristics of
magnetic-glass and the relevant set of experiments, which will enable to
distinguish a magnetic-glass unequivocally from the well known phenomena of
spin-glass and reentrant spin-glass.Comment: 10 pages and 4 figures. The preprint has been amended after taking
care of various typographical errors, some errors in Figs.2 and 4 and with
the addition of some new references. This version has been accepted for
publication in Physical Review
Spin-chirality decoupling in the one-dimensional Heisenberg spin glass with long-range power-law interactions
We study the issue of the spin-chirality decoupling/coupling in the ordering
of the Heisenberg spin glass by performing large-scale Monte Carlo simulations
on a one-dimensional Heisenberg spin-glass model with a long-range power-law
interaction up to large system sizes. We find that the spin-chirality
decoupling occurs for an intermediate range of the power-law exponent.
Implications to the corresponding -dimensional short-range model is
discussed.Comment: 5 pages, 4 figures, to appear in Physical Review Letter
Monte Carlo studies of the chiral and spin orderings of the three-dimensional Heisenberg spin glass
The nature of the ordering of the three-dimensional isotropic Heisenberg spin
glass with nearest-neighbor random Gaussian coupling is studied by extensive
Monte Carlo simulations. Several independent physical quantities are measured
both for the spin and for the chirality, including the correlation-length
ratio, the Binder ratio, the glass order parameter, the overlap distribution
function and the non-self-averageness parameter. By controlling the effect of
the correction-to-scaling, we have obtained a numerical evidence for the
occurrence of successive chiral-glass and spin-glass transitions at nonzero
temperatures, T_{CG} > T_{SG} > 0. Hence, the spin and the chirality are
decoupled in the ordering of the model. The chiral-glass exponents are
estimated to be \nu_{CG}=1.4+-0.2 and \eta_{CG}=0.6+-0.2, indicating that the
chiral-glass transition lies in a universality class different from that of the
Ising spin glass. The possibility that the spin and chiral sectors undergo a
simultaneous Kosterlitz-Thouless-type transition is ruled out. The chiral-glass
state turns out to be non-self-averaging, possibly accompanying a one-step-like
peculiar replica-symmetry breaking. Implications to the chirality scenario of
experimental spin-glass transitions are discussed.Comment: 20 pages, 24 figures. The Chi^2-analysis of the transition point has
been added with new Fig.12. Some references also adde
Nonlinear and spin-glass susceptibilities of three site-diluted systems
The nonlinear magnetic and spin-glass susceptibilities
in zero applied field are obtained, from tempered Monte Carlo simulations, for
three different spin glasses (SGs) of Ising spins with quenched site disorder.
We find that the relation ( is the temperature),
which holds for Edwards-Anderson SGs, is approximately fulfilled in
canonical-like SGs. For nearest neighbor antiferromagnetic interactions, on a
0.4 fraction of all sites in fcc lattices, as well as for spatially disordered
Ising dipolar (DID) systems, and appear to diverge in
the same manner at the critical temperature . However, is
smaller than by over two orders of magnitude in the diluted fcc
system. In DID systems, is very sensitive to the systems
aspect ratio. Whereas near , varies by approximately a
factor of 2 as system shape varies from cubic to long-thin-needle shapes,
sweeps over some four decades.Comment: 7 pages, 7 figure
- …