9 research outputs found

    IN SILICO DOCKING STUDIES ON KAEMPFERITRIN WITH DIVERSE INFLAMMATORY AND APOPTOTIC PROTEINS FUNCTIONAL APPROACH TOWARDS THE COLON CANCER

    Get PDF
    Objective: The objective of this research was to formulate the binding energies and interaction of amino acid residues in kaempferitrin with different types of apoptotic and inflammatory proteins of colon cancer.Methods: AutoDock Vina and MGL tool were used for docking calculations. Both programs require the pdbqt input files and allow for flexibility of all the torsional bonds of small molecules. Discovery Studio Visualizer v3.5 was used for removal of water molecules and ligands and the pymol program was used to do analysis of the docking with various apoptotic proteins BAX, Bcl-2, COX-2, Protein kinase B.Results: In our study was developed binding energy scoring function of kaempferitrin docked with different types of inflammatory proteins and apoptotic proteins. Binding score values for-6.9 (BAX),-7.2 (Bcl-2),-7.3 (caspase-3),-8.8 (Cox-2),-7.4 (Cytochrome P450),-6.7 (Proteinase kinase B),-8.0 (TNF-α) and-7.2 (VEGF) kcal/mol, respectively. Amino acid interaction of kaempferitrin with proteins for ARG-25, LEU-52, ASN-54, PHE-55, GLU-17, LYS-14, TRP-22, THR-21 GLY-16 (Protein Kinase B), ASP-102, ASN-48, GLN-52, ASP-104 (BAX), GLU-176, TRP-173, GLU-132, PHE-135 (Bcl-2), SER-249, ASP-2, ASN-208, GLN-217, LEU-242 (Caspase 3), TYR-55, HIS-39, SER-49, GLU-322, GLY-326 (COX-2), SER-95, LEU-94, ARG-82, VAL-123, ALA-96 (TNF-α), ASP-414, LYS-322, GLU-326, GLU-416, GLU-438, ALA-439, GLU-437 (Cytochrome P450) and LEU-47, GLN-46, CYS-61, CYS-60, ASP-63, GLU-67, GLY-65, LEU-66 (VEGF) respectively.Conclusion: The results obtained in this research work clearly indicated the docking scores of apoptotic and Inflammatory proteins imply that kaempferitrin is an effective inhibitory compound for colon cancer

    Combinatorial anticancer effects of multi metal ion and drug substitute with hydroxyapatite coatings on surgical grade 316LSS stainless steel alloys towards biomedical applications

    No full text
    The present study highlights the metal ions and existing drug ampicillin-loaded nano-hydroxyapatite (nHAP) coated on 316 stainless steel alloy (316LSS) using the electrodeposition method. In addition, the sample phase purity and crystallinity of the HAp composite coatings on 316LSS were analyzed by X-ray diffraction analysis (XRD) and Fourier transform infrared (FT-IR) spectroscopy using the KBr pellet method. The coating microstructure/morphology was characterized using a scanning electron microscope, which showed a flower-like morphology with the attachment of energy-dispersive X-ray spectroscopy (EDX) to confirm the major element groups in the synthesized sample. The TGA results showed that weight loss occurred in the temperature range of up to 800 °C for oxidation and reduction reactions. Additionally, the beat-optimized nanomaterial showed promising in vitro bioactivity against disease-causing microorganisms, displaying a significant zone of inhibition. Furthermore, cytotoxicity assessment using the MTT assay demonstrated that the synthesized samples effectively inhibited cell proliferation in human osteosarcoma cell lines (Saos-2). AO/EB double staining performed under a fluorescence microscope indicated changes in the morphology of the apoptotic cell nuclei. In addition, the relationship between ROS and nanomaterial-induced apoptosis in Saos-2 cells was analyzed by flow cytometry. MMP (ΔѰmt) profiling showed that the HAp composite increased the effective mitochondrial membrane damage or depolarization in the human osteosarcoma cell line. Moreover, the TUNEL assay suggested that treated nanomaterial with Saos-2 cells showed enhanced green fluorescence intensity, indicating terminal DNA damage. The obtained results meet the recommended physiological standard for synthesized 316LSS HAp composites to guide bone tissue regeneration

    Biosynthesis and Biomedical Applications of Gold Nanoparticles Using Eclipta prostrata Leaf Extract

    No full text
    This study reports the biological synthesis of gold nanoparticles (AuNPs) by the reduction of HAuCl4 by using of Eclipta prostrata leaf extract as the reducing and stabilizing agent. AuNPs were characterized using Ultraviolet–visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier Transform-Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), High Resolution-Transmission Electron Microscopy (HRTEM), and Energy Dispersive X-ray analysis (EDAX). The UV-visible spectrum of the synthesized AuNPs showed surface plasmon resonance (SPR) around 534 nm. The face-centered cubic (FCC) structure of the AuNPs was confirmed by XRD peaks at 38.10°, 44.13°, 64.43°, and 77.32°, which correspond to (111), (200), (220), and (311) miller indices, respectively, with clear circular spots in the selected area electron diffraction (SAED). FTIR measurements showed the AuNPs having a coating of phenolic compounds, indicating a possible role of biomolecules responsible for capping and efficient stabilization of the AuNPs. The HRTEM images determined the particles are spherical, hexagonal, and triangular in shape, with an average size of 31 ± 1.6 nm. The synthesized AuNPs show good antibacterial, antioxidant, and cytotoxic activity. The outcomes of this study indicate that these nanoparticles could be effectively utilized in pharmaceutical, biotechnological, and biomedical applications

    Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review

    No full text
    Among a large number of current biomedical applications in the use of medical devices, carbon-based nanomaterials such as graphene (G), graphene oxides (GO), reduced graphene oxide (rGO), and carbon nanotube (CNT) are frontline materials that are suitable for developing medical devices. Carbon Based Nanomaterials (CBNs) are becoming promising materials due to the existence of both inorganic semiconducting properties and organic π-π stacking characteristics. Hence, it could effectively simultaneously interact with biomolecules and response to the light. By taking advantage of such aspects in a single entity, CBNs could be used for developing biomedical applications in the future. The recent studies in developing carbon-based nanomaterials and its applications in targeting drug delivery, cancer therapy, and biosensors. The development of conjugated and modified carbon-based nanomaterials contributes to positive outcomes in various therapies and achieved emerging challenges in preclinical biomedical applications. Subsequently, diverse biomedical applications of carbon nanotube were also deliberately discussed in the light of various therapeutic advantages

    Protective Effect of Salvianolic Acid B in Acetic Acid-Induced Experimental Colitis in a Mouse Model

    No full text
    In its prominent experimental studies salvianolic acid B (Sal B) is novel because of its well-defined, common physiological effects, which include anti-inflammatory, anti-depressant, cardioprotective, DNA protective, neuroprotective and hepatoprotective activity in experimental animals. Initially, Sal B was studied for its anti-inflammatory properties, used as a remedy for a wide range of disease conditions, but its specific efficacy on inflammatory bowel disease is still unclear. The aim of this current study was to understand the therapeutic potential of Sal B in an acetic acid (AA)—triggered experimental mouse colitis model. Colitis was triggered by intrarectal injection of 5% AA, and then laboratory animals were given Sal B (10, 20 and 40 μg/kg) for seven days. The ulcerated colonic mucosa was assessed by clinical experiment, macroscopical, biological and histopathological analysis. The results showed depleted SOD, CAT, GSH levels and consequential elevated MPO and MDA levels and aberrant crypt foci and mast cells were seen in the AA-induced colonic mucosa of experimental animals. The data obtained from this study demonstrate that a dose of 40 µg/kg showed an efficacious anti-ulcer effect against AA-induced experimental colitis. Based on its antioxidant efficacy, Sal B may therefore be useful as a therapeutic approach for ulcerative colitis

    Green Synthesis and Characterization of Cobalt Oxide Nanoparticles Using <i>Psidium guajava</i> Leaves Extracts and Their Photocatalytic and Biological Activities

    No full text
    The advanced technology for synthesizing nanoparticles utilizes natural resources in an environmentally friendly manner. Additionally, green synthesis is preferred to chemical and physical synthesis because it takes less time and effort. The green synthesis of cobalt oxide nanoparticles has recently risen due to its physico-chemical properties. In this study, many functional groups present in Psidium guajava leaf extracts are used to stabilize the synthesis of cobalt oxide nanoparticles. The biosynthesized cobalt oxide nanoparticles were investigated using UV-visible spectroscopic analysis. Additionally, Fourier-transform infrared spectroscopy revealed the presence of carboxylic acids, hydroxyl groups, aromatic amines, alcohols and phenolic groups. The X-ray diffraction analysis showed various peaks ranging from 32.35 to 67.35°, and the highest intensity showed at 36.69°. The particle size ranged from 26 to 40 nm and confirmed the average particle size is 30.9 nm. The green synthesized P. guajava cobalt oxide nanoparticles contain cobalt as the major abundant element, with 42.26 wt% and 18.75 at% confirmed by the EDAX techniques. SEM images of green synthesized P. guajava cobalt oxide nanoparticles showed agglomerated and non-uniform spherical particles. The anti-bacterial activity of green synthesized P. guajava cobalt oxide nanoparticles was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli with a 7 to 18 mm inhibitory zone. The photocatalytic activity was evaluated using green synthesized P. guajava cobalt oxide nanoparticles and observed 79% of dye degradation. The MTT assay of P. guajava cobalt oxide nanoparticles showed an excellent cytotoxic effect against MCF 7 and HCT 116 cells compared to normal cells. The percentage of cell viability of P. guajava cobalt oxide nanoparticles was observed as 90, 83, 77, 68, 61, 58 and 52% for MCF-7 cells and 82, 70, 63, 51, 43, 40, and 37% for HCT 116 cells at the concentration of 1.53, 3.06, 6.12, 12.24, 24.48, 50, and 100 μg/mL compared to control cells. These results confirmed that green synthesized P. guajava cobalt oxide nanoparticles have a potential photocatalytic and anti-bacterial activity and also reduced cell viability against MCF-7 breast cancer and HCT 116 colorectal cancer cells

    Sustainable Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles Using Lantana camara Leaf Extracts: Physicochemical Characterization, Photocatalytic Degradation, Antibacterial, and Anticancer Potency

    No full text
    Due to their appropriate physicochemical properties, nanoparticles are used in nanomedicine to develop drug delivery systems for anticancer therapy. In biomedical applications, metal oxide nanoparticles are used as powerful and flexible multipurpose agents. This work described a green synthesis of Y2O3 nanoparticles (NPs) using the sol-gel technique with the use of aqueous leaf extracts of Lantana camara L (LC). These nanoparticles were characterized with the aid of different methods, including UV, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmitted electron microscopy (TEM), and photocatalytic degradation. Y2O3 nanoparticles showed excellent antibacterial activity against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli with a 10 to 15 mm inhibitory zone. Green Y2O3 NPs were released with a 4 h lag time and 80% sustained release rate, indicating that they could be used in drug delivery. In addition, the bioavailability of green Y2O3 NPs was investigated using cell viability in cervical cancer cell lines. These green-synthesized Y2O3 NPs demonstrated photocatalytic degradation, antibacterial, and anticancer properties
    corecore