1,250 research outputs found
Decoherence in a single trapped ion due to engineered reservoir
The decoherence in trapped ion induced by coupling the ion to the engineered
reservoir is studied in this paper. The engineered reservoir is simulated by
random variations in the trap frequency, and the trapped ion is treated as a
two-level system driven by a far off-resonant plane wave laser field. The
dependence of the decoherence rate on the amplitude of the superposition state
is given.Comment: 4 pages, 2 figure
Atomic dynamics in evaporative cooling of trapped alkali atoms in strong magnetic fields
We investigate how the nonlinearity of the Zeeman shift for strong magnetic
fields affects the dynamics of rf field induced evaporative cooling in magnetic
traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave
packet simulations how the cooling stops when the rf field frequency goes below
a certain limit (for the 85-Rb F=2 trapping state the problem does not appear).
We examine the applicability of semiclassical models for the strong field case
as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our
results verify many of the aspects observed in a recent Rb experiment
[Phys. Rev. A 60, R1759 (1999)].Comment: 9 pages, RevTex, eps figures embedde
Mach-Zehnder Bragg interferometer for a Bose-Einstein Condensate
We construct a Mach-Zehnder interferometer using Bose-Einstein condensed
rubidium atoms and optical Bragg diffraction. In contrast to interferometers
based on normal diffraction, where only a small percentage of the atoms
contribute to the signal, our Bragg diffraction interferometer uses all the
condensate atoms. The condensate coherence properties and high phase-space
density result in an interference pattern of nearly 100% contrast. In
principle, the enclosed area of the interferometer may be arbitrarily large,
making it an ideal tool that could be used in the detection of vortices, or
possibly even gravitational waves.Comment: 10 pages, 3 figures, Quantum Electronics and Laser Science Conference
1999, Postdeadline papers QPD12-
Universality of Decoherence
We consider environment induced decoherence of quantum superpositions to
mixtures in the limit in which that process is much faster than any competing
one generated by the Hamiltonian of the isolated system. While
the golden rule then does not apply we can discard . By allowing
for simultaneous couplings to different reservoirs, we reveal decoherence as a
universal short-time phenomenon independent of the character of the system as
well as the bath and of the basis the superimposed states are taken from. We
discuss consequences for the classical behavior of the macroworld and quantum
measurement: For the decoherence of superpositions of macroscopically distinct
states the system Hamiltonian is always negligible.Comment: 4 revtex pages, no figure
Evaporative Cooling of a Two-Component Degenerate Fermi Gas
We derive a quantum theory of evaporative cooling for a degenerate Fermi gas
with two constituents and show that the optimum cooling trajectory is
influenced significantly by the quantum statistics of the particles. The
cooling efficiency is reduced at low temperatures due to Pauli blocking of
available final states in each binary collision event. We compare the
theoretical optimum trajectory with experimental data on cooling a quantum
degenerate cloud of potassium-40, and show that temperatures as low as 0.3
times the Fermi temperature can now be achieved.Comment: 6 pages, 4 figure
Optical Confinement of a Bose-Einstein Condensate
Bose-Einstein condensates of sodium atoms have been confined in an optical
dipole trap using a single focused infrared laser beam. This eliminates the
restrictions of magnetic traps for further studies of atom lasers and
Bose-Einstein condensates. More than five million condensed atoms were
transferred into the optical trap. Densities of up to of Bose condensed atoms were obtained, allowing for a measurement of
the three-body decay rate constant for sodium condensates as . At lower densities, the observed 1/e
lifetime was more than 10 sec. Simultaneous confinement of Bose-Einstein
condensates in several hyperfine states was demonstrated.Comment: 5 pages, 4 figure
Bose--Einstein solitons in highly asymmetric traps
We obtain analytic solutions to the Gross-Pitaevskii equation with negative
scattering length in highly asymmetric traps. We find that in these traps the
Bose--Einstein condensates behave like quasiparticles and do not expand when
the trapping in one direction is eliminated. The results can be applicable to
the control of the motion of Bose--Einstein condensates.Comment: 12 pages, Latex, Figures available under request on
[email protected]
Nuclear Attenuation of Fast Hadrons Produced in Charged-Current Neutrino and Antineutrino Interactions in Neon
The production of hadrons in charged-current (anti)neutrino interactions is
studied with the bubble chamber BEBC exposed ot the CERN (anti)neutrino
wide-band beam. Fast-hadron production in a neon target is found to be
attennuated as compared to that in a hydrogen target. This feature is discussed
within the theoretical models based on the idea of a hadron formation length.
The experimental results favour the `constituent' over the `yo-yo' length
concept, and suggest a quark cross-section in the order of 3mb.Comment: 14 pages + 7 figures, ps fil
Inhibition of Decoherence due to Decay in a Continuum
We propose a scheme for slowing down decay into a continuum. We make use of a
sequence of ultrashort -pulses applied on an auxiliary transition of the
system so that there is a destructive interference between the two transition
amplitudes - one before the application of the pulse and the other after the
application of the pulse. We give explicit results for a structured continuum.
Our scheme can also inhibit unwanted transitions.Comment: 11 pages and 4 figures, submitted to Physical Review Letter
Exploring a quantum degenerate gas of fermionic atoms
We predict novel phenomena in the behavior of an ultra- cold, trapped gas of
fermionic atoms. We find that quantum statistics radically changes the
collisional properties, spatial profile, and off-resonant light scattering
properties of the atomic fermion system, and we suggest how these effects can
be observed.Comment: 5 pages, 3 figure
- …