2,148 research outputs found

    Entropy and specific heat for open systems in steady states

    Full text link
    The fundamental assumption of statistical mechanics is that the system is equally likely in any of the accessible microstates. Based on this assumption, the Boltzmann distribution is derived and the full theory of statistical thermodynamics can be built. In this paper, we show that the Boltzmann distribution in general can not describe the steady state of open system. Based on the effective Hamiltonian approach, we calculate the specific heat, the free energy and the entropy for an open system in steady states. Examples are illustrated and discussed.Comment: 4 pages, 7 figure

    Analysis of some global optimization algorithms for space trajectory design

    Get PDF
    In this paper, we analyze the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of ²-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper

    Reshaping graduate outcomes of science students – The contribution of undergraduate research experiences

    Get PDF
    Today’s science graduates require substantially different skills compared to yesterday’s graduates given the changing nature of modern science. As higher education institutions struggle to reform curricula and pedagogy, undergraduate research experiences (UREs) are increasingly being incorporated to enhance undergraduate science curricula. This study is situated within a traditional Bachelor of Science degree that offers students some voluntary opportunities to participate in UREs. This study explores two graduating science cohorts (n=272), comparing those who did and did not participate in UREs. A survey investigated student perceptions (importance, confidence and improvements) of five graduate outcomes in the context of science: writing skills, communication skills, quantitative skills (QS), teamwork skills and content knowledge. Cross-tabs and a linear discriminant analysis were used to investigate perception change between the two groups. The notable differences in perception scores in this study were consistently higher in QS, perhaps indicative of UREs emphasising the need for such skills in science or from students gaining increased confidence as a result of utilising QS within an authentic context. Our results reveal little difference in other student outcome areas, which raises questions around the role of UREs as a broad strategy for enhancing the achievement of graduate outcomes in science. This study is limited to a single institution and is focused on specific graduate outcomes, so only limited conclusions can be drawn. However, further research to determine the graduate outcomes gained from UREs would benefit the sector, particularly science disciplines, in the changing focus of government policy on student learning outcomes

    Prevalence study of yaws in the Democratic Republic of Congo using the lot quality assurance sampling method.

    Get PDF
    BACKGROUND: Until the 1970s the prevalence of non-venereal trepanomatosis, including yaws, was greatly reduced after worldwide mass treatment. In 2005, cases were again reported in the Democratic Republic of the Congo. We carried out a survey to estimate the village-level prevalence of yaws in the region of Equator in the north of the country in order to define appropriate strategies to effectively treat the affected population. METHODOLOGY/PRINCIPAL FINDINGS: We designed a community-based survey using the Lot Quality Assurance Sampling method to classify the prevalence of active yaws in 14 groups of villages (lots). The classification into high, moderate, or low yaws prevalence corresponded to World Health Organization prevalence thresholds for identifying appropriate operational treatment strategies. Active yaws cases were defined by suggestive clinical signs and positive rapid plasma reagin and Treponema pallidum hemagglutination serological tests. The overall prevalence in the study area was 4.7% (95% confidence interval: 3.4-6.0). Two of 14 lots had high prevalence (>10%), three moderate prevalence (5-10%) and nine low prevalence (<5%.). CONCLUSIONS/SIGNIFICANCE: Although yaws is no longer a World Health Organization priority disease, the presence of yaws in a region where it was supposed to be eradicated demonstrates the importance of continued surveillance and control efforts. Yaws should remain a public health priority in countries where previously it was known to be endemic. The integration of sensitive surveillance systems together with free access to effective treatment is recommended. As a consequence of our study results, more than 16,000 people received free treatment against yaws

    Bose-Einstein Condensation in a Surface Micro Trap

    Full text link
    Bose-Einstein condensation has been achieved in a magnetic surface micro trap with 4x10^5 87Rb atoms. The strongly anisotropic trapping potential is generated by a microstructure which consists of microfabricated linear copper conductors at a width ranging from 3 to 30 micrometer. After loading a high number of atoms from a pulsed thermal source directly into a magneto-optical trap (MOT) the magnetically stored atoms are transferred into the micro trap by adiabatic transformation of the trapping potential. The complete in vacuo trap design is compatible with ultrahigh vacuum below 2x10^(-11) mbar.Comment: 4 pages, 4 figure

    Dynamical decoherence in a cavity with a large number of two-level atoms

    Full text link
    We consider a large number of two-level atoms interacting with the mode of a cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the Holstein-Primakoff transformation to study the model in the limit of the number of two-level atoms, all in their ground state, becoming very large. The unitary evolution that we obtain in this approximation is applied to a macroscopic superposition state showing that, when the coherent states forming the superposition are enough distant, then the state collapses on a single coherent state describing a classical radiation mode. This appear as a true dynamical effect that could be observed in experiments with cavities.Comment: 9 pages, no figures. This submission substitutes paper quant-ph/0212148 that was withdrawn. Version accepted for publication in Journal of Physics B: Atomic, Molecular & Optical Physic

    Influence of stochastic estimation on the control of subsonic cavity flow – A preliminary study

    Get PDF
    This work aims at understanding how the different elements involved in the feedback loop influence the overall control performance of a subsonic cavity flow based on reducedorder modeling. To this aim we compare preliminary and limited sets of experimental results obtained by modifying some relevant characteristics of the loop. Our results support the findings in the literature that use of quadratic stochastic estimation is preferable to the linear one for real-time update of the model parameters. They also seem to indicate the merit of using more than one time sample of the pressure for performing the real-time update of the model through stochastic estimation. The effect of using two different sets of pressure signals for the stochastic estimation also corroborates previous findings indicating the need for optimizing the number and the placement of the sensors used in the feedback control loop. Finally we observed that the characteristics of the actuator can alter significantly the overall control effect by introducing in the feedback loop additional, undesirable frequency components that are not modeled and hence controlled. A compensator for the actuator is currently being designed that will alleviate this problem thus enabling a clearer understanding of the overall control technique

    Static Properties of Trapped Bose-Fermi Mixed Condensate of Alkali Atoms

    Full text link
    Static properties of a bose-fermi mixture of trapped potassium atoms are studied in terms of coupled Gross-Pitaevskii and Thomas-Fermi equations for both repulsive and attractive bose-fermi interatomic potentials. Qualitative estimates are given for solutions of the coupled equations, and the parameter regions are obtained analytically for the boson-density profile change and for the boson/fermion phase separation. Especially, the parameter ratio RintR_{int} is found that discriminates the region of the large boson-profile change. These estimates are applied for numerical results for the potassium atoms and checked their consistency. It is suggested that a small fraction of fermions could be trapped without an external potential for the system with an attractive boson-fermion interaction.Comment: 8 pages,5 figure

    Instabilities of wave function monopoles in Bose-Einstein condensates

    Full text link
    We present analytic and numerical results for a class of monopole solutions to the two-component Gross-Pitaevski equation for a two-species Bose condensate in an effectively two-dimensional trap. We exhibit dynamical instabilities involving vortex production as one species pours through another, from which we conclude that the sub-optical sharpness of potentials exerted by matter waves makes condensates ideal tools for manipulating condensates. We also show that there are two equally valid but drastically different hydrodynamic descriptions of a two-component condensate, and illustrate how different phenomena may appear simpler in each.Comment: 4 pages, 9 figures (compressed figures become legible when zoomed or when paper is actually printed
    • …
    corecore