1,809 research outputs found
The effect of cervical cancer on survivor\u27s sexual dysfunction and quality of life.
Cervical cancer poses a unique opportunity for researchers who are interested in quality of life. It is one of the most common cancers, has a very high survival rate, and very little research has been conducted to determine the effects of cervical cancer on women post-diagnosis. This goal of this thesis was to determine if cervical cancer survivors were at greater risk of sexual dysfunction due to treatment or stage of disease and to determine if poorer quality of life outcomes were associated with sexual dysfunction and depression. The results found that stage and treatment options put survivors at greater risk for sexual dysfunction and that sexual dysfunction and depression were associated with poorer mental and physical quality of life
Promiscuous and lineage-specific roles of cell cycle regulators in haematopoiesis
Haematopoietic cell number is maintained by a delicate balance between cell proliferation, differentiation and death. Gene knockout studies in mice have revealed the complex roles of cyclins, CDKs, and CDK inhibitors in regulating cell proliferation and differentiation in the haematopoietic system. These studies point to families of cell cycle regulators which display both redundant and unique roles within a lineage and developmental-stage specific manner. Moreover, the promiscuity of these cell cycle regulators is critical for haematopoietic cell proliferation and differentiation. In this review, we discuss the current evidence from mouse models that the complexity and multifarious nature of the haematopoietic system is critical for its form and function
Multi-agent collaborative search : an agent-based memetic multi-objective optimization algorithm applied to space trajectory design
This article presents an algorithm for multi-objective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighbourhood of each agent. These heuristics are complemented with a combination of a local and global archive. The novel agent-based algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. Its performance is compared against a number of state-of-the-art multi-objective optimization algorithms that use the Pareto dominance as selection criterion: non-dominated sorting genetic algorithm (NSGA-II), Pareto archived evolution strategy (PAES), multiple objective particle swarm optimization (MOPSO), and multiple trajectory search (MTS). The results demonstrate that the agent-based search can identify parts of the Pareto set that the other algorithms were not able to capture. Furthermore, convergence is statistically better although the variance of the results is in some cases higher
Two-species magneto-optical trap with 40K and 87Rb
We trap and cool a gas composed of 40K and 87Rb, using a two-species
magneto-optical trap (MOT). This trap represents the first step towards cooling
the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is
derived from laser diodes and amplified with a single high power semiconductor
amplifier chip. The four-color laser system is described, and the
single-species and two-species MOTs are characterized. Atom numbers of 1x10^7
40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap
loss due to collisions between species is presented and future prospects for
the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review
Effect of an External Field on Decoherence
"Decoherence of quantum superpositions through coupling to engineered
reservoirs" is the topic of a recent article by Myatt et al. [Nature
{\underline{403}}, 269 (2000)] which has attracted much interest because of its
relevance to current research in fundamental quantum theory, quantum
computation, teleportation, entanglement and the quantum-classical interface.
However, the preponderance of theoretical work on decoherence does not consider
the effect of an {\underline{external field}}. Here, we present an analysis of
such an effect in the case of the random delta-correlated force discussed by
Myatt et al
Dynamical decoherence in a cavity with a large number of two-level atoms
We consider a large number of two-level atoms interacting with the mode of a
cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the
Holstein-Primakoff transformation to study the model in the limit of the number
of two-level atoms, all in their ground state, becoming very large. The unitary
evolution that we obtain in this approximation is applied to a macroscopic
superposition state showing that, when the coherent states forming the
superposition are enough distant, then the state collapses on a single coherent
state describing a classical radiation mode. This appear as a true dynamical
effect that could be observed in experiments with cavities.Comment: 9 pages, no figures. This submission substitutes paper
quant-ph/0212148 that was withdrawn. Version accepted for publication in
Journal of Physics B: Atomic, Molecular & Optical Physic
Dynamics of two colliding Bose-Einstein condensates in an elongated magneto-static trap
We study the dynamics of two interacting Bose-Einstein condensates, by
numerically solving two coupled Gross-Pitaevskii equations at zero temperature.
We consider the case of a sudden transfer of atoms between two trapped states
with different magnetic moments: the two condensates are initially created with
the same density profile, but are trapped into different magnetic potentials,
whose minima are vertically displaced by a distance much larger than the
initial size of both condensates. Then the two condensates begin to perform
collective oscillations, undergoing a complex evolution, characterized by
collisions between the two condensates. We investigate the effects of their
mutual interaction on the center-of-mass oscillations and on the time evolution
of the aspect ratios. Our theoretical analysis provides a useful insight into
the recent experimental observations by Maddaloni et al., cond-mat/0003402.Comment: 8 pages, 7 figures, RevTe
Creation of vortices in a Bose-Einstein condensate by a Raman technique
We propose a method for taking a Bose-Einstein condensate in the ground trap
state simultaneously to a different atomic hyperfine state and to a vortex trap
state. This can be accomplished through a Raman scheme in which one of the two
copropagating laser beams has a higher-order Laguerre-Gaussian mode profile.
Coefficients relating the beam waist, pulse area, and trap potentials for a
complete transfer to the m = 1 vortex are calculated for a condensate in the
non-interacting and strongly interacting regimes.Comment: RevTex, 4 pages, 2 PostScript figure
Static Properties of Trapped Bose-Fermi Mixed Condensate of Alkali Atoms
Static properties of a bose-fermi mixture of trapped potassium atoms are
studied in terms of coupled Gross-Pitaevskii and Thomas-Fermi equations for
both repulsive and attractive bose-fermi interatomic potentials. Qualitative
estimates are given for solutions of the coupled equations, and the parameter
regions are obtained analytically for the boson-density profile change and for
the boson/fermion phase separation. Especially, the parameter ratio
is found that discriminates the region of the large boson-profile change. These
estimates are applied for numerical results for the potassium atoms and checked
their consistency. It is suggested that a small fraction of fermions could be
trapped without an external potential for the system with an attractive
boson-fermion interaction.Comment: 8 pages,5 figure
Bose-Einstein Condensation in a Surface Micro Trap
Bose-Einstein condensation has been achieved in a magnetic surface micro trap
with 4x10^5 87Rb atoms. The strongly anisotropic trapping potential is
generated by a microstructure which consists of microfabricated linear copper
conductors at a width ranging from 3 to 30 micrometer. After loading a high
number of atoms from a pulsed thermal source directly into a magneto-optical
trap (MOT) the magnetically stored atoms are transferred into the micro trap by
adiabatic transformation of the trapping potential. The complete in vacuo trap
design is compatible with ultrahigh vacuum below 2x10^(-11) mbar.Comment: 4 pages, 4 figure
- …