2 research outputs found

    Effectiveness of reactive focal mass drug administration and reactive focal vector control to reduce malaria transmission in the low malaria-endemic setting of Namibia: a cluster-randomised controlled, open-label, two-by-two factorial design trial.

    Get PDF
    BACKGROUND: In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia). METHODS: We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400. FINDINGS: Between Jan 1, 2017, and Dec 31, 2017, 55 enumeration area clusters had 1118 eligible index cases that led to 342 interventions covering 8948 individuals. The cumulative incidence of locally acquired malaria was 30路8 per 1000 person-years (95% CI 12路8-48路7) in the clusters that received rfMDA versus 38路3 per 1000 person-years (23路0-53路6) in the clusters that received RACD; 30路2 per 1000 person-years (15路0-45路5) in the clusters that received RAVC versus 38路9 per 1000 person-years (20路7-57路1) in the clusters that did not receive RAVC; and 25路0 per 1000 person-years (5路2-44路7) in the clusters that received rfMDA plus RAVC versus 41路4 per 1000 person-years (21路5-61路2) in the clusters that received RACD only. After adjusting for imbalances in baseline and implementation factors, the incidence of malaria was lower in clusters receiving rfMDA than in those receiving RACD (adjusted incidence rate ratio 0路52 [95% CI 0路16-0路88], p=0路009), lower in clusters receiving RAVC than in those that did not (0路48 [0路16-0路80], p=0路002), and lower in clusters that received rfMDA plus RAVC than in those receiving RACD only (0路26 [0路10-0路68], p=0路006). No serious adverse events were reported. INTERPRETATION: In a low malaria-endemic setting, rfMDA and RAVC, implemented alone and in combination, reduced malaria transmission and should be considered as alternatives to RACD for elimination of malaria. FUNDING: Novartis Foundation, Bill & Melinda Gates Foundation, and Horchow Family Fund

    Cost and cost effectiveness of reactive case detection (RACD), reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) to reduce malaria in the low endemic setting of Namibia: an analysis alongside a 2脳2 factorial design cluster randomised controlled trial.

    No full text
    OBJECTIVES: To estimate the cost and cost effectiveness of reactive case detection (RACD), reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) to reduce malaria in a low endemic setting. SETTING: The study was part of a 2脳2 factorial design cluster randomised controlled trial within the catchment area of 11 primary health facilities in Zambezi, Namibia. PARTICIPANTS: Cost and outcome data were collected from the trial, which included 8948 community members that received interventions due to their residence within 500 m of malaria index cases. OUTCOME MEASURES: The primary outcome was incremental cost effectiveness ratio (ICER) per in incident case averted. ICER per prevalent case and per disability-adjusted life years (DALY) averted were secondary outcomes, as were per unit interventions costs and personnel time. Outcomes were compared as: (1) rfMDA versus RACD, (2) RAVC versus no RAVC and (3) rfMDA+RAVC versus RACD only. RESULTS: rfMDA cost 1.1脳 more than RACD, and RAVC cost 1.7脳 more than no RAVC. Relative to RACD only, the cost of rfMDA+RAVC was double (3082vs3082 vs 1553 per event). The ICERs for rfMDA versus RACD, RAVC versus no RAVC and rfMDA+RAVC versus RACD only were 114,114, 1472 and $842, per incident case averted, respectively. Using prevalent infections and DALYs as outcomes, trends were similar. The median personnel time to implement rfMDA was 20% lower than for RACD (30 vs 38鈥塵in per person). The median personnel time for RAVC was 34鈥塵in per structure sprayed. CONCLUSION: Implemented alone or in combination, rfMDA and RAVC were cost effective in reducing malaria incidence and prevalence despite higher implementation costs in the intervention compared with control arms. Compared with RACD, rfMDA was time saving. Cost and time requirements for the combined intervention could be decreased by implementing rfMDA and RAVC simultaneously by a single team. TRIAL REGISTRATION NUMBER: NCT02610400; Post-results
    corecore