76 research outputs found

    Enhanced Transgene Expression from Recombinant Single-Stranded D-Sequence-Substituted Adeno-Associated Virus Vectors in Human Cell Lines In Vitro and in Murine Hepatocytes In Vivo

    Get PDF
    ABSTRACT We have previously reported that the removal of a 20-nucleotide sequence, termed the D sequence, from both ends of the inverted terminal repeats (ITRs) in the adeno-associated virus serotype 2 (AAV2) genome significantly impairs rescue, replication, and encapsidation of the viral genomes (X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Mol Biol 250:573–580, 1995; X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Virol 70:1668–1677, 1996). Here we describe that replacement of only one D sequence in either ITR restores each of these functions, but DNA strands of only single polarity are encapsidated in mature progeny virions. Since most commonly used recombinant AAV vectors contain a single-stranded DNA (ssDNA), which is transcriptionally inactive, efficient transgene expression from AAV vectors is dependent upon viral second-strand DNA synthesis. We have also identified a transcription suppressor sequence in one of the D sequences, which shares homology with the binding site for the cellular NF-κB-repressing factor (NRF). The removal of this D sequence from, and replacement with a sequence containing putative binding sites for transcription factors in, single-stranded AAV (ssAAV) vectors significantly augments transgene expression both in human cell lines in vitro and in murine hepatocytes in vivo . The development of these genome-modified ssAAV vectors has implications not only for the basic biology of AAV but also for the optimal use of these vectors in human gene therapy. IMPORTANCE The results of the studies described here not only have provided novel insights into some of the critical steps in the life cycle of a human virus, the adeno-associated virus (AAV), that causes no known disease but have also led to the development of novel recombinant AAV vectors which are more efficient in allowing increased levels of gene expression. Thus, these studies have significant implications for the potential use of these novel AAV vectors in human gene therapy

    The Effect of DNA-Dependent Protein Kinase on Adeno-Associated Virus Replication

    Get PDF
    BACKGROUND: DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme and plays an important role in determining the molecular fate of the rAAV genome. However, the effect this cellular enzyme on rAAV DNA replication remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the roles of DNA-PK on recombinant adeno-associated virus DNA replication. Inhibition of DNA-PK by a DNA-PK inhibitor or siRNA targeting DNA-PKcs significantly decreased replication of AAV in MO59K and 293 cells. Southern blot analysis showed that replicated rAAV DNA formed head-to-head or tail-to-tail junctions. The head-to-tail junction was low or undetectable suggesting AAV-ITR self-priming is the major mechanism for rAAV DNA replication. In an in vitro replication assay, anti-Ku80 antibody strongly inhibited rAAV replication, while anti-Ku70 antibody moderately decreased rAAV replication. Similarly, when Ku heterodimer (Ku70/80) was depleted, less replicated rAAV DNA were detected. Finally, we showed that AAV-ITRs directly interacted with Ku proteins. CONCLUSION/SIGNIFICANCE: Collectively, our results showed that that DNA-PK enhances rAAV replication through the interaction of Ku proteins and AAV-ITRs

    Studies of the Mechanism of Transactivation of the Adeno-Associated Virus p19 Promoter by Rep Protein

    No full text
    During adeno-associated virus (AAV) type 2 productive infections, the p19 promoter of AAV is activated by the AAV Rep78 and Rep68 proteins. Rep-induced activation of p19 depends on the presence of one of several redundant Rep binding elements (RBEs) within the p5 promoter or within the terminal repeats (TR). In the absence of the TR, the p5 RBE and the p19 Sp1 site at position −50 are essential for p19 transactivation. To determine how a Rep complex bound at p5 induces transcription at p19, we made a series of p19 promoter chloramphenicol acetyltransferase constructs in which the p5 RBE was inserted at different locations upstream or downstream of the p19 mRNA start site. The RBE acted like a repressor element at most positions in the presence of both Rep and adenovirus (Ad), and the level of repression increased dramatically as the RBE was inserted closer to the p19 promoter. We concluded that the RBE by itself was not a conventional upstream activation signal and instead behaved like a repressor. To understand how the Rep-RBE complex within p5 activated p19, we considered the possibility that its role was to function as an architectural protein whose purpose was to bring other p5 transcriptional elements to the p19 promoter. In order to address this possibility, we replaced both the p5 RBE and the p19 Sp1 site with GAL4 binding sites. The modified GAL4-containing constructs were cotransfected with plasmids that expressed GAL4 fusion proteins capable of interacting through p53 and T-antigen (T-ag) protein domains. In the presence of Ad and the GAL4 fusion proteins, the p19 promoter exhibited strong transcriptional activation that was dependent on both the GAL4 fusion proteins and Ad infection. This suggested that the primary role of the p5 RBE and the p19 Sp1 sites was to act as a scaffold for bringing transcription complexes in the p5 promoter into close proximity with the p19 promoter. Since Rep and Sp1 themselves were not essential for transactivation, we tested mutants within the other p5 transcriptional elements in the context of GAL4-induced looping to determine which of the other p5 elements was necessary for p19 induction. Mutation of the p5 major late-transcription factor site reduced p19 activity but did not eliminate induction in the presence of the GAL4 fusion proteins. However, mutation of the p5 YY1 site at position −60 (YY1-60) eliminated GAL4-induced transactivation. This implicated the YY1-60 protein complexes in p19 induction by Rep. In addition, both basal p19 activity and activity in the presence of Ad increased when the YY1-60 site was mutated even in the absence of Rep or GAL4 fusion proteins. Therefore, there are likely to be alternative p5-p19 interactions that are Rep independent in which the YY1-60 complex inhibits p19 transcription. We concluded that transcriptional control of the p19 promoter was dependent on the formation of complexes between the p5 and p19 promoters and that activation of the p19 promoter depends largely on the ability of Rep and Sp1 to form a scaffold that positions the p5 YY1 complex near the p19 promoter

    Complete In Vitro Reconstitution of Adeno-Associated Virus DNA Replication Requires the Minichromosome Maintenance Complex Proteinsâ–¿

    No full text
    Adeno-associated virus (AAV) replicates its DNA exclusively by a leading-strand DNA replication mechanism and requires coinfection with a helper virus, such as adenovirus, to achieve a productive infection. In previous work, we described an in vitro AAV replication assay that required the AAV terminal repeats (the origins for DNA replication), the AAV Rep protein (the origin binding protein), and an adenovirus-infected crude extract. Fractionation of these crude extracts identified replication factor C (RFC), proliferating cell nuclear antigen (PCNA), and polymerase δ as cellular enzymes that were essential for AAV DNA replication in vitro. Here we identify the remaining factor that is necessary as the minichromosome maintenance (MCM) complex, a cellular helicase complex that is believed to be the replicative helicase for eukaryotic chromosomes. Thus, polymerase δ, RFC, PCNA, and the MCM complex, along with the virally encoded Rep protein, constitute the minimal protein complexes required to reconstitute efficient AAV DNA replication in vitro. Interfering RNAs targeted to MCM and polymerase δ inhibited AAV DNA replication in vivo, suggesting that one or more components of the MCM complex and polymerase δ play an essential role in AAV DNA replication in vivo as well as in vitro. Our reconstituted in vitro DNA replication system is consistent with the current genetic information about AAV DNA replication. The use of highly conserved cellular replication enzymes may explain why AAV is capable of productive infection in a wide variety of species with several different families of helper viruses
    • …
    corecore