2 research outputs found

    Secure Software Development: Issues and Challenges

    Full text link
    In recent years, technology has advanced considerably with the introduction of many systems including advanced robotics, big data analytics, cloud computing, machine learning and many more. The opportunities to exploit the yet to come security that comes with these systems are going toe to toe with new releases of security protocols to combat this exploitation to provide a secure system. The digitization of our lives proves to solve our human problems as well as improve quality of life but because it is digitalized, information and technology could be misused for other malicious gains. Hackers aim to steal the data of innocent people to use it for other causes such as identity fraud, scams and many more. This issue can be corrected during the software development life cycle, integrating security across the development phases, and testing of the software is done early to reduce the number of vulnerabilities that might or might not heavily impact an organisation depending on the range of the attack. The goal of a secured system software is to prevent such exploitations from ever happening by conducting a system life cycle where through planning and testing is done to maximise security while maintaining functionality of the system. In this paper, we are going to discuss the recent trends in security for system development as well as our predictions and suggestions to improve the current security practices in this industry.Comment: 20 Pages, 4 Figure

    The complete mitochondrial genome of blue pansy, Junonia orithya (Lepidoptera: Nymphalidae: Nymphalinae) from Pakistan

    No full text
    Junonia orithya’s complete mitochondrial genome (mitogenome) is determined to be 14,214 bp in length, including 37 typical mitochondrial genes and an AT-rich region. Its gene order and orientation are identical to those of other butterfly species. All PCGs are initiated by typical ATN codons, except for cox1 gene which is started by CGA codon. Nine genes use complete termination codon (TAA), whereas the COX1, COX2, NADH1 and NAH4 genes end with single T. Except for trnS1(AGN), all tRNA genes display typical secondary cloverleaf structures as those of other insects. The 331 bp long AT-rich region contains several features common to the other lepidopterans, such as the ATAGA motif followed by a 18 bp poly-T stretch, two microsatellite-like (TA) 9 elements, a 5 bp poly-A stretch immediately upstream of trNAM gene from Pakistan
    corecore