22 research outputs found

    Optical properties of cosmic dust analogs: A review

    Full text link
    Nanometer- and micrometer-sized solid particles play an important role in the evolutionary cycle of stars and interstellar matter. The optical properties of cosmic grains determine the interaction of the radiation field with the solids, thereby regulating the temperature structure and spectral appearance of dusty regions. Radiation pressure on dust grains and their collisions with the gas atoms and molecules can drive powerful winds. The analysis of observed spectral features, especially in the infrared wavelength range, provides important information on grain size, composition and structure as well as temperature and spatial distribution of the material. The relevant optical data for interstellar, circumstellar, and protoplanetary grains can be obtained by measurements on cosmic dust analogs in the laboratory or can be calculated from grain models based on optical constants. Both approaches have made progress in the last years, triggered by the need to interpret increasingly detailed high-quality astronomical observations. The statistical theoretical approach, spectroscopic experiments at variable temperature and absorption spectroscopy of aerosol particulates play an important role for the successful application of the data in dust astrophysics.Comment: 18 pages, 6 figures, invited review for Journal of Nanophotonics, Special Section to honour C.F. Bohre

    Optical constants of refractory oxides at high temperatures

    Full text link
    Many cosmic dust species, among them refractory oxides, form at temperatures higher than 300 K. Nevertheless, most astrophysical studies are based on the room-temperature optical constants of solids, such as corundum and spinel. A more realistic approach is needed for these materials, especially in the context of modeling late-type stars. We aimed at deriving sets of optical constants of selected, astrophysically relevant oxide dust species with high melting points. A high-temperature-high-pressure-cell and a Fourier-transform spectrometer were used to measure reflectance spectra of polished samples. For corundum (alpha-Al2_2O3_3), spinel (MgAl2_2O4_4), and alpha-quartz (SiO2_2), temperature-dependent optical constants were measured from 300 K up to more than 900 K. Small particle spectra were also calculated from these data. All three examined oxides show a significant temperature dependence of their mid-IR bands. For the case of corundum, we find that the 13μ\mum emission feature - seen in the IR spectra of many AGB stars - can very well be assigned to this mineral species. The best fit of the feature is achieved with oblate corundum grains at mean temperatures around 550 K. Spinel remains a viable carrier of the 13μ\mum feature as well, but only for T < 300 K and nearly spherical grain shapes. Under such circumstances, spinel grains may also account for the 31.8μ\mum band that is frequently seen in sources of the 13μ\mum feature and which has not yet been identified with certainty.Comment: Astronomy & Astrophysics, accepted, 26 February 2013. Article with 18 pages and 15 figure

    Reconsidering the origin of the 21 micron feature: Oxides in carbon-rich PPNe?

    Full text link
    The origin of the so-called "21 micron" feature which is especially prominent in the spectra of some carbon-rich protoplanetary nebulae (PPNe}) is the matter of a lively debate. A large number of potential band carriers have been presented and discarded within the past decade. The present paper gives an overview of the problems related to the hitherto proposed feature identifications, including the recently suggested candidate carrier silicon carbide. We also discuss the case for spectroscopically promising oxides. SiC is shown to produce a strong resonance band at 20-21 micron if coated by a layer of silicon dioxide. At low temperatures, core-mantle particles composed of SiC and amorphous SiO2_2 indeed have their strongest spectral signature at a position of 20.1 micron, which coincides with the position of the "21 micron" emission band. The optical constants of another candidate carrier that has been relatively neglected so far -- iron monoxide -- are proven to permit a fairly accurate reproduction of the "21 micron" feature profile as well, especially when low-temperature measurements of the infrared properties of FeO are taken into account. As candidate carrier of the "21 micron" emission band, FeO has the advantage of being stable against further oxidation and reduction only in a narrow range of chemical and physical conditions, coinciding with the fact that the feature, too, is detected in a small group of objects only. However, it is unclear how FeO should form or survive particularly in carbon-rich PPNe.Comment: 28 pages, 15 figures, accepted for publication in ApJ (December

    Near-infrared absorption properties of oxygen-rich stardust analogues: The influence of coloring metal ions

    Full text link
    Several astrophysically relevant solid oxides and silicates have extremely small opacities in the visual and near-infrared in their pure forms. Datasets for the opacities and for the imaginary part k of their complex indices of refraction are hardly available in these wavelength ranges. We aimed at determining k for spinel, rutile, anatase, and olivine, especially in the near-infrared region. Our measurements were made with impurity-containing, natural, and synthetic stardust analogs. Two experimental methods were used: preparing small sections of natural minerals and synthesizing melt droplets under the electric arc furnace. In both cases, the aborption properties of the samples were measured by transmission spectroscopy. For spinel (MgAl2O4), anatase, rutile (both TiO2), and olivine ((Mg,Fe)2SiO4), the optical constants have been extended to the visual and near-infrared. We highlight that the individual values of k and the absorption cross section depend strongly on the content in transition metals like iron. Based on our measurements, we infer that k values below 10^(-5) are very rare in natural minerals including stardust grains, if they occur at all. Data for k and the absorption cross section are important for various physical properties of stardust grains such as temperature and radiation pressure. With increasing absorption cross section due to impurities, the equilibrium temperature of small grains in circumstellar shells increases as well. We discuss why and to what extent this is the case

    Infrared extinction by homogeneous particle aggregates of SiC, FeO and SiO2: comparison of different theoretical approaches

    Full text link
    Particle shape and aggregation have a strong influence on the spectral profiles of infrared phonon bands of solid dust grains. Calculating these effects is difficult due to the often extreme refractive index values in these bands. In this paper, we use the Discrete Dipole Approximation (DDA) and the T-matrix method to compute the absorption band profiles for simple clusters of touching spherical grains. We invest reasonable amounts of computation time in order to reach high dipole grid resolutions and take high multi-polar orders into account, respectively. The infrared phonon bands of three different refractory materials of astrophysical relevance are considered - Silicon Carbide (SiC), Wustite (FeO) and Silicon Dioxide (SiO2). We demonstrate that even though these materials display a range of material properties and therefore different strengths of the surface resonances, a complete convergence is obtained with none of the approaches. For the DDA, we find a strong dependence of the calculated band profiles on the exact dipole distribution within the aggregates, especially in the vicinity of the contact points between their spherical constituents. By applying a recently developed method to separate the material optical constants from the geometrical parameters in the DDA approach, we are able to demonstrate that the most critical material properties are those where the real part of the refractive index is much smaller than unity.Comment: Accepted for publication in the Journal of Quantitative Spectroscopy & Radiative Transfer (JQSRT

    Recent Results of Solid-State Spectroscopy

    Full text link
    Solid state spectroscopy continues to be an important source of information on the mineralogical composition and physical properties of dust grains both in space and on planetary surfaces. With only a few exceptions, artificially produced or natural terrestrial analog materials, rather than 'real' cosmic dust grains, are the subject of solid state astrophysics. The Jena laboratory has provided a large number of data sets characterizing the UV, optical and infrared properties of such cosmic dust analogs. The present paper highlights recent developments and results achieved in this context, focussing on 'non-standard conditions' such as very low temperatures, very high temperatures and very long wavelengths.Comment: 15 pages, 10 figures. Contribution to an IAU Conference "The Molecular Universe" held in Toledo in June 201

    Sub-mm/mm optical properties of real protoplanetary matter derived from Rosetta/MIRO observations of comet 67P

    Full text link
    Optical properties are required for the correct understanding and modelling of protoplanetary and debris discs. By assuming that comets are the most pristine bodies in the solar system, our goal is to derive optical constants of real protoplanetary material. We determine the complex index of refraction of the near-surface material of comet 67P/Churyumov-Gerasimenko by fitting the sub-millimetre/millimetre observations of the thermal emission of the comet's sub-surface made by the Microwave Instrument for the Rosetta Orbiter (MIRO) with synthetic temperatures derived from a thermophysical model and radiative-transfer models. According to the two major formation scenarios of comets, we model the sub-surface layers to consist of pebbles as well as of homogeneously packed dust grains. In the case of a homogeneous dusty surface material, we find a solution for the length-absorption coefficient of α≈0.22 cm−1\alpha \approx 0.22~\mathrm{cm^{-1}} for a wavelength of 1.594 mm and α≥3.84 cm−1\alpha \geq 3.84~\mathrm{cm^{-1}} for a wavelength of 0.533 mm and a constant thermal conductivity of 0.006 Wm−1K−10.006~\mathrm{Wm^{-1}K^{-1}}. For the pebble scenario, we find for the pebbles and a wavelength of 1.594 mm a complex refractive index of n=(1.074−1.256)+i (2.580−7.431)⋅10−3n = (1.074 - 1.256) + \mathrm{i} \, (2.580 - 7.431)\cdot 10^{-3} for pebble radii between 1 mm and 6 mm. Taking into account other constraints, our results point towards a pebble makeup of the cometary sub-surface with pebble radii between 3 mm and 6 mm. The derived real part of the refractive index is used to constrain the composition of the pebbles and their volume filling factor. The optical and physical properties are discussed in the context of protoplanetary and debris disc observations.Comment: Accepted for publication in MNRA

    Far-infrared continuum absorption of forsterite and enstatite at low temperatures

    No full text
    Context. The far-infrared continuum opacity of cold dust is an important quantity for the study of debris disks in planetary systems and of protoplanetary disks. Forsterite and enstatite are considered to be the most abundant crystalline dust species in such environments. Aims. The optical constants of these minerals at wavelengths above 80 μm, which govern the opacity, and their temperature dependence are poorly known. Our aim is to fill in this lack of information with new laboratory data. Methods. We present spectroscopic transmission measurements on forsterite and enstatite single crystals of up to 10 mm thickness at wavelengths between 45 and 500 μm and for temperatures down to 10 K. We compare our results to literature data originating from powder transmission and from reflection spectroscopy. Results. The imaginary parts of the refractive indices calculated from the measurements show very strong temperature dependences, which to that extent are not seen in reflection-based data or in powder measurement data. The temperature dependences can be described by a simple theoretical model taking the contributions of single-phonon absorption and phonon difference processes into account. We also observe, for the first time, enstatite absorption bands at 87.5 μm and 116.6 μm wavelengths. Conclusions. The single-crystal optical constants of forsterite and enstatite predict an extremely small submillimeter opacity of crystalline silicate dust at low temperatures, which would make these particles almost invisible in the thermal radiation of cold dust. Thus, it is important to understand why absorption measurements with mineral powders resulted in much higher opacity values
    corecore