60 research outputs found
Mesothelial cells regulate immune responses in health and disease: Role for immunotherapy in malignant mesothelioma
Highlights: Mesothelial and immune cell interactions play a crucial role in tissue homeostasis in the serosal cavities such as the pleura. Mesothelin is viewed as an attractive target for solid tumors, including malignant mesothelioma. Checkpoint inhibitor therapy has shown variable efficacy against malignant mesothelioma. CAR T cell therapies are being evaluated for malignant mesothelioma. Treatment of malignant mesothelioma will require multimodality approaches with immunotherapy central to future therapeutic approaches.
The mesothelium when first described was thought to function purely as a non-adhesive surface to facilitate intracoelomic movement of organs. However, the mesothelium is now recognized as a dynamic cellular membrane with many important functions that maintain serosal integrity and homeostasis. For example, mesothelial cells interact with and help regulate the bodyâs inflammatory and immune system following infection, injury, or malignancy. With recent advances in our understanding of checkpoint molecules and the advent of novel immunotherapy approaches, there has been an increase in the number of studies examining mesothelial and immune cell interaction, in particular the role of these interactions in malignant mesothelioma. This review will highlight some of the recent advances in our understanding of how mesothelial cells help regulate serosal immunity and how in a malignant environment, the immune system is hijacked to stimulate tumor growth. Ways to treat mesothelioma using immunotherapy approaches will also be discussed
Idiopathic pulmonary fibrosis and a role for autoimmunity
Idiopathic Pulmonary Fibrosis (IPF) is the most common of the idiopathic interstitial pneumonias. It is typically associated with extensive and progressive fibrosis, is fatal and has limited treatment options. Characteristically IPF patients display large lymphocyte aggregates composed of CD3+ T cells and CD20+ B cells within the lung tissue that are located near sites of active fibrosis. In addition, IPF patients can have autoantibodies to a range of host antigens, suggesting a breakdown in immunological tolerance. In this review we examine the role of T and B cells in IPF pathogenesis and discuss how loss of self- tolerance to lung specific proteins could exacerbate disease progression in IPF. We discuss what these results mean in terms of future prospects for immunotherapy of IPF
Adhesion Moleculeâdependent Mechanisms Regulate the Rate of Macrophage Clearance During the Resolution of Peritoneal Inflammation
Macrophage clearance is essential for the resolution of inflammation. Much is known about how monocytes enter the inflammatory site but little is known about how resultant macro-phages are cleared. We have previously demonstrated that macrophage clearance from resolving peritonitis occurs by emigration into draining lymphatics rather than local apoptosis. We now examine mechanisms for this process, in particular by evaluating the hypothesis that modulation of adhesion interactions between macrophages and cells lining the lymphatics regulates the rate of macrophage clearance. We demonstrate in vivo that macrophages adhere specifically to mesothelium overlying draining lymphatics and that their emigration rate is regulated by the state of macrophage activation. We observed that macrophageâmesothelial adhesion is Arg-Gly-Asp (RGD) sensitive and partially mediated by very late antigen (VLA)-4 and VLA-5 but not αv or ÎČ2 integrins. Moreover, macrophage clearance into lymphatics can be blocked in vivo by RGD peptides and VLA-4 and VLA-5 but not ÎČ2 blocking antibodies. This is the first evidence that macrophage emigration from the inflamed site is controlled and demonstrates that this is exerted through specific adhesion molecule regulation of macrophageâmesothelial interactions. It highlights the importance of adhesion molecules governing entry of cells into the lymphatic circulation, thus opening a new avenue for manipulating the resolution of inflammation
Self DNA perpetuates IPF lung fibroblast senescence in a cGAS-dependent manner
Senescence and mitochondrial stress are mutually reinforcing age-related processes that contribute to idiopathic pulmonary fibrosis (IPF); a lethal disease that manifests primarily in the elderly. Whilst evidence is accumulating that GMP-AMP synthase (cGAS) is crucial in perpetuating senescence by binding damaged DNA released into the cytosol, its role in IPF is not known. The present study examines the contributions of cGAS and self DNA to the senescence of lung fibroblasts from IPF patients (IPF-LFs) and age-matched controls (Ctrl-LFs). cGAS immunoreactivity was observed in regions of fibrosis associated with fibroblasts in lung tissue of IPF patients. Pharmacological inhibition of cGAS or its knockdown by silencing RNA (siRNA) diminished the escalation of IPF-LF senescence in culture over 7 days as measured by decreased p21 and p16 expression, histone 2AX? phosphorylation and/or IL-6 production (P < 0.05, n = 5-8). The targeting of cGAS also attenuated etoposide-induced senescence in Ctrl-LFs (P < 0.05, n = 5-8). Levels of mitochondrial DNA (mDNA) detected by qPCR in the cytosol and medium of IPF-LFs or senescence-induced Ctrl-LFs were higher than Ctrl-LFs at baseline (P < 0.05, n = 5-7). The addition of DNAse I (100 U/ml) deaccelerated IPF-LF senescence (P < 0.05, n = 5), whereas ectopic mDNA or the induction of endogenous mDNA release augmented Ctrl-LF senescence in a cGAS-dependent manner (P < 0.05, n = 5). In conclusion, we provide evidence that cGAS reinforces lung fibroblast senescence involving damaged self DNA. The targeting of cGAS to supress senescent-like responses may have potential important therapeutic implications in the treatment of IPF
A cGAS-dependent response links DNA damage and senescence in alveolar epithelial cells:A potential drug target in IPF
Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Mitochondrial dysfunction including release of mitochondrial DNA (mtDNA) is a feature of senescence, which led us to investigate the role of the DNA-sensing GMP-AMP synthase (cGAS) in IPF, with a focus on AEC senescence. cGAS expression in fibrotic tissue from lungs of IPF patients was detected within cells immunoreactive for epithelial cell adhesion molecule (EpCAM) and p21, epithelial and senescence markers respectively. Submerged primary cultures of AECs isolated from lung tissue of IPF patients (IPF-AECs, n=5) exhibited higher baseline senescence than AECs from control donors (Ctrl-AECs, n=5-7), as assessed by increased nuclear histone 2AXÎł phosphorylation, p21 mRNA and expression of senescence-associated secretory phenotype (SASP) cytokines. Pharmacological cGAS inhibition using RU.521 diminished IPF-AEC senescence in culture and attenuated induction of Ctrl-AEC senescence following etoposide-induced DNA damage. Short interfering RNA (siRNA) knockdown of cGAS also attenuated etoposide-induced senescence of the AEC line, A549. Higher levels of mtDNA were detected in the cytosol and culture supernatants of primary IPF- and etoposide-treated Ctrl-AECs when compared to Ctrl-AECs at baseline. Furthermore, ectopic mtDNA augmented cGAS-dependent senescence of Ctrl-AECs, whereas DNAse I treatment diminished IPF-AEC senescence. This study provides evidence that a self-DNA driven, cGAS-dependent response augments AEC senescence, identifying cGAS as a potential therapeutic target for IPF
Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts
Increasing evidence highlights that senescence plays an important role in idiopathic pulmonary fibrosis (IPF). This study delineates the specific contribution of mitochondria and the superoxide they form to the senescent phenotype of lung fibroblasts from IPF patients (IPF-LFs). Primary cultures of IPF-LFs exhibited an intensified DNA damage response (DDR) and were more senescent than age-matched fibroblasts from control donors (Ctrl-LFs). Furthermore, IPF-LFs exhibited mitochondrial dysfunction, exemplified by increases in mitochondrial superoxide, DNA, stress and activation of mTORC1. The DNA damaging agent etoposide elicited a DDR and augmented senescence in Ctrl-LFs, which were accompanied by disturbances in mitochondrial homoeostasis including heightened superoxide production. However, etoposide had no effect on IPF-LFs. Mitochondrial perturbation by rotenone involving sharp increases in superoxide production also evoked a DDR and senescence in Ctrl-LFs, but not IPF-LFs. Inhibition of mTORC1, antioxidant treatment and a mitochondrial targeting antioxidant decelerated IPF-LF senescence and/or attenuated pharmacologically induced Ctrl-LF senescence. In conclusion, increased superoxide production by dysfunctional mitochondria reinforces lung fibroblast senescence via prolongation of the DDR. As part of an auto-amplifying loop, mTORC1 is activated, altering mitochondrial homoeostasis and increasing superoxide production. Deeper understanding the mechanisms by which mitochondria contribute to fibroblast senescence in IPF has potentially important therapeutic implications
Emerging role of immune cells as drivers of pulmonary fibrosis
The pathogenesis of pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and other forms of interstitial lung disease, involves a complex interplay of various factors including host genetics, environmental pollutants, infection, aberrant repair and dysregulated immune responses. Highly variable clinical outcomes of some ILDs, in particular IPF, have made it difficult to identify the precise mechanisms involved in disease pathogenesis and thus the development of a specific cure or treatment to halt and reverse the decline in patient health. With the advent of in-depth molecular diagnostics, it is becoming evident that the pathogenesis of IPF is unlikely to be the same for all patients and therefore will likely require different treatment approaches. Chronic inflammation is a cardinal feature of IPF and is driven by both innate and adaptive immune responses. Inflammatory cells and activated fibroblasts secrete various pro-inflammatory cytokines and chemokines that perpetuate the inflammatory response and contribute to the recruitment and activation of more immune cells and fibroblasts. The balance between pro-inflammatory and regulatory immune cell subsets, as well as the interactions between immune cell types and resident cells within the lung microenvironment, ultimately determines the extent of fibrosis and the potential for resolution. This review examines the role of the innate and adaptive immune responses in pulmonary fibrosis, with an emphasis on IPF. The role of different immune cell types is discussed as well as novel anti-inflammatory and immunotherapy approaches currently in clinical trial or in preclinical development
- âŠ