328 research outputs found
Label-free proteomics identifies Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers for spinal muscular atrophy
BACKGROUND: Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations in the survival motor neuron 1 (SMN1) gene. Recent breakthroughs in preclinical research have highlighted several potential novel therapies for SMA, increasing the need for robust and sensitive clinical trial platforms for evaluating their effectiveness in human patient cohorts. Given that most clinical trials for SMA are likely to involve young children, there is a need for validated molecular biomarkers to assist with monitoring disease progression and establishing the effectiveness of therapies being tested. Proteomics technologies have recently been highlighted as a potentially powerful tool for such biomarker discovery. METHODS: We utilized label-free proteomics to identify individual proteins in pathologically-affected skeletal muscle from SMA mice that report directly on disease status. Quantitative fluorescent western blotting was then used to assess whether protein biomarkers were robustly changed in muscle, skin and blood from another mouse model of SMA, as well as in a small cohort of human SMA patient muscle biopsies. RESULTS: By comparing the protein composition of skeletal muscle in SMA mice at a pre-symptomatic time-point with the muscle proteome at a late-symptomatic time-point we identified increased expression of both Calreticulin and GRP75/Mortalin as robust indicators of disease progression in SMA mice. We report that these protein biomarkers were consistently modified in different mouse models of SMA, as well as across multiple skeletal muscles, and were also measurable in skin biopsies. Furthermore, Calreticulin and GRP75/Mortalin were measurable in muscle biopsy samples from human SMA patients. CONCLUSIONS: We conclude that label-free proteomics technology provides a powerful platform for biomarker identification in SMA, revealing Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers capable of reporting on disease progression in samples of muscle and skin
Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM mode for ultrafast electron microscopy
We present a theoretical description of resonant radiofrequency (RF)
deflecting cavities in TM mode as dynamic optical elements for
ultrafast electron microscopy. We first derive the optical transfer matrix of
an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D
phase space propagation of a Gaussian electron distribution through the cavity.
We derive closed, analytic expressions for the increase in transverse emittance
and energy spread of the electron distribution. We demonstrate that for the
special case of a beam focused in the center of the cavity, the low emittance
and low energy spread of a high quality beam can be maintained, which allows
high-repetition rate, ultrafast electron microscopy with 100 fs temporal
resolution combined with the atomic resolution of a high-end TEM. This is
confirmed by charged particle tracking simulations using a realistic cavity
geometry, including fringe fields at the cavity entrance and exit apertures
Direct magneto-optical compression of an effusive atomic beam for high-resolution focused ion beam application
An atomic rubidium beam formed in a 70 mm long two-dimensional
magneto-optical trap (2D MOT), directly loaded from a collimated Knudsen
source, is analyzed using laser-induced fluorescence. The longitudinal velocity
distribution, the transverse temperature and the flux of the atomic beam are
reported. The equivalent transverse reduced brightness of an ion beam with
similar properties as the atomic beam is calculated because the beam is
developed to be photoionized and applied in a focused ion beam. In a single
two-dimensional magneto-optical trapping step an equivalent transverse reduced
brightness of A/(m sr eV) was
achieved with a beam flux equivalent to nA. The
temperature of the beam is further reduced with an optical molasses after the
2D MOT. This increased the equivalent brightness to A/(m sr eV). For currents below 10 pA, for which disorder-induced
heating can be suppressed, this number is also a good estimate of the ion beam
brightness that can be expected. Such an ion beam brightness would be a six
times improvement over the liquid metal ion source and could improve the
resolution in focused ion beam nanofabrication.Comment: 10 pages, 8 figures, 1 tabl
Direct Observation of Sub-Poissonian Temporal Statistics in a Continuous Free Electron Beam with Sub-picosecond Resolution
Recently, interest in anti-bunched electron beams has surged because of their
potential in free electron quantum optics and electron microscopy. However, the
limited temporal resolution of available detectors poses a challenge in
observing the statistics of such beams. We propose a novel method to measure
the arrival time statistics of continuous electron beams with sub-ps
resolution. We developed a 2D streak camera based on the combination of
RF-cavity-based electron beam deflection and fast single electron imaging. We
observed Poissonian statistics within time bins from 100~ns to 1~ns and
increasingly pronounced sub-Poissonian statistics as the time bin decreases
from 2~ps to 340~fs
Measurement of the temperature of an ultracold ion source using time-dependent electric fields
We report on a measurement of the characteristic temperature of an ultracold
rubidium ion source, in which a cloud of laser-cooled atoms is converted to
ions by photo-ionization. Extracted ion pulses are focused on a detector with a
pulsed-field technique. The resulting experimental spot sizes are compared to
particle-tracking simulations, from which a source temperature
mK and the corresponding transversal reduced emittance m rad are determined. We find that this result is
likely limited by space charge forces even though the average number of ions
per bunch is 0.022.Comment: 8 pages, 11 figure
Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA
Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis
Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-beta signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;mu MT-/- compound mutant mice, but fibrosis still occurred in their Smad3-/- counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1a1 gene transcription independently of canonical TGF-beta/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis
Seroprevalence of SARS-CoV-2 antibodies among healthcare workers in Dutch hospitals after the 2020 first wave:a multicentre cross-sectional study with prospective follow-up
BACKGROUND: We aimed to estimate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence and describe its determinants and associated symptoms among unvaccinated healthcare workers (HCWs) after the first wave of the pandemic.METHODS: HCWs from 13 Dutch hospitals were screened for antibodies against the spike protein of SARS-CoV-2 in June-July 2020 and after three months. Participants completed a retrospective questionnaire on determinants for occupational and community exposure to SARS-CoV-2 and symptoms suggestive of COVID-19 experienced since January 2020. The seroprevalence was calculated per baseline characteristic and symptom at baseline and after follow-up. Adjusted odds ratios (aOR) for seropositivity were determined using logistic regression.RESULTS: Among 2328 HCWs, 323 (13.9%) were seropositive at enrolment, 49 of whom (15%) reported no previous symptoms suggestive of COVID-19. During follow-up, only 1% of the tested participants seroconverted. Seroprevalence was higher in younger HCWs compared to the mid-age category (aOR 1.53, 95% CI 1.07-2.18). Nurses (aOR 2.21, 95% CI 1.34-3.64) and administrative staff (aOR 1.87, 95% CI 1.02-3.43) had a higher seroprevalence than physicians. The highest seroprevalence was observed in HCWs in the emergency department (ED) (aOR 1.79, 95% CI 1.10-2.91), the lowest in HCWs in the intensive, high, or medium care units (aOR 0.47, 95% CI 0.31-0.71). Chronic respiratory disease, smoking, and having a dog were independently associated with a lower seroprevalence, while HCWs with diabetes mellitus had a higher seroprevalence. In a multivariable model containing all self-reported symptoms since January 2020, altered smell and taste, fever, general malaise/fatigue, and muscle aches were positively associated with developing antibodies, while sore throat and chills were negatively associated.CONCLUSIONS: The SARS-CoV-2 seroprevalence in unvaccinated HCWs of 13 Dutch hospitals was 14% in June-July 2020 and remained stable after three months. A higher seroprevalence was observed in the ED and among nurses, administrative and young staff, and those with diabetes mellitus, while a lower seroprevalence was found in HCWs in intensive, high, or medium care, and those with self-reported lung disease, smokers, and dog owners. A history of altered smell or taste, fever, muscle aches and fatigue were independently associated with the presence of SARS-CoV-2 antibodies in unvaccinated HCWs.</p
A review of hyperfibrinolysis in cats and dogs
The fibrinolytic system is activated concurrently with coagulation; it regulates haemostasis and prevents thrombosis by restricting clot formation to the area of vascular injury and dismantling the clot as healing occurs. Dysregulation of the fibrinolytic system, which results in hyperfibrinolysis, may manifest as clinically important haemorrhage. Hyperfibrinolysis occurs in cats and dogs secondary to a variety of congenital and acquired disorders. Acquired disorders associated with hyperfibrinolysis, such as trauma, cavitary effusions, liver disease and Angiostrongylus vasorum infection, are commonly encountered in primary care practice. In addition, delayed haemorrhage reported in greyhounds following trauma and routine surgical procedures has been attributed to a hyperfibrinolytic disorder, although this has yet to be characterised. The diagnosis of hyperfibrinolysis is challenging and, until recently, has relied on techniques that are not readily available outside referral hospitals. With the recent development of point‐of‐care viscoelastic techniques, assessment of fibrinolysis is now possible in referral practice. This will provide the opportunity to target haemorrhage due to hyperfibrinolysis with antifibrinolytic drugs and thereby reduce associated morbidity and mortality. The fibrinolytic system and the conditions associated with increased fibrinolytic activity in cats and dogs are the focus of this review article. In addition, laboratory and point‐of‐care techniques for assessing hyperfibrinolysis and antifibrinolytic treatment for patients with haemorrhage are reviewed
Bidirectional regulation of bone formation by exogenous and osteosarcoma-derived Sema3A
Semaphorin 3A (Sema3A), a secreted member of the Semaphorin family, increases osteoblast differentiation, stimulates bone formation and enhances fracture healing. Here, we report a previously unknown role of Sema3A in the regulation of ectopic bone formation and osteolysis related to osteosarcoma. Human recombinant (exogenous) Sema3A promoted the expression of osteoblastic phenotype in a panel of human osteosarcoma cell lines and inhibited the ability of these cells to migrate and enhance osteoclastogenesis in vitro. In vivo, administration of exogenous Sema3A in mice after paratibial inoculation of KHOS cells increased bone volume in non-inoculated and tumour-bearing legs. In contrast, Sema3A overexpression reduced the ability of KHOS cells to cause ectopic bone formation in mice and to increase bone nodule formation by engaging DKK1/β-catenin signalling. Thus, Sema3A is of potential therapeutic efficacy in osteosarcoma. However, inhibition of bone formation associated with continuous exposure to Sema3A may limit its long-term usefulness as therapeutic agent
- …