5 research outputs found

    Iron ooid beds of the Carolinefjellet Formation, Spitsbergen, Norway

    Get PDF
    Iron ooid beds are unusual deposits that have been linked to greenhouse conditions and the transgressive flooding of shallow shelves, and which were globally prevalent during certain periods. Within the marine, Aptian-Albian, Carolinefjellet Formation of Spitsbergen, chamosite ooids have been found within distinctive sandstone beds at six localities, and at a consistent stratigraphic position within the basal Dalkjegla Member. Distinctive characteristics include the iron ooids themselves, a coarser grain size, intercalation with silty siderites, grading, cross-beds indicating offshore or longshore transport, and a lack of burrowing. The enclosing sands display planar and hummocky crossstratification and abundant oscillation ripple marks, and are interpreted as lagoon-attached bar complexes. The stratigraphic position and traits of the iron ooid sands are consistent with seaward storm transport and preservation within interbar swales. Ooids vary in shape considerably, and display evidence for multiple growth events. Nuclei of quartz, opaques, carbonate clasts and laminated crusts are typically encircled by finer grained tangential chamosite and opaque laminae, sometimes with outer overgrowths of calcite and/or radial chamosite. The Dalkjegla Member is the marine portion of a large-scale transgressive tract, attached to underlying fluvio-estuarine Helvetiafjellet Formation strata. A lagoonal environment associated with the basal shales of the Dalkjegla Member represents a logical setting, where riverine iron concentration and iron silicate growth could occur. The Spitsbergen iron ooid beds extend the known occurrence of Cretaceous examples, representing a less common High-Latitude example, and one not directly associated with a transgressive flooding surface

    Petrography of Lower Cretaceous sandstones on Spitsbergen

    Get PDF
    The sandstone petrography of sample suites from four sites spanning the Rurikfjellet (Hauterivian) to Carolinefjellet (Aptian–Albian) formations in central Spitsbergen was investigated. The sandstones show a distinct stepwise shift in composition from quartz arenites to sublitharenites and lithic arenites, typically within the upper part of the Helvetiafjellet Formation. This shift is related to the introduction of 10 - 25 % (grain %) plagioclase grains and volcanic lithics, and a notable increase in basement and sedimentary lithics. Quartz grain character also changes, and grain shapes become more varied. The shift is also associated with the transgressive arrival of marine sediments in the area, and the introduction of sands from the east-northeast by shore-parallel transport. Regional regression and subsequent transgression, and the change in sandstone composition is attributed to the development of the High Arctic Large Igneous Province in the region. The relative constancy of sand composition and volume of volcanic detritus within the Carolinefjellet Formation suggests long term (≈ 20 M) stability of the sediment system and a large volcanic source area, consistent with LIP (Large Igneous Province) derivation, along with significant exposure of basement rocks. Sample spacing and sediment recycling and mixing do not allow detection of events that would have changed sandstone composition that were less than ≈ 1 M duration. Preservation of significant amounts of plagioclase in a sediment-starved shelf can be explained by relatively cold climatic conditions

    Petrography of Lower Cretaceous sandstones on Spitsbergen

    No full text
    The sandstone petrography of sample suites from four sites spanning the Rurikfjellet (Hauterivian) to Carolinefjellet (Aptian–Albian) formations in central Spitsbergen was investigated. The sandstones show a distinct stepwise shift in composition from quartz arenites to sublitharenites and lithic arenites, typically within the upper part of the Helvetiafjellet Formation. This shift is related to the introduction of 10 - 25 % (grain %) plagioclase grains and volcanic lithics, and a notable increase in basement and sedimentary lithics. Quartz grain character also changes, and grain shapes become more varied. The shift is also associated with the transgressive arrival of marine sediments in the area, and the introduction of sands from the east-northeast by shore-parallel transport. Regional regression and subsequent transgression, and the change in sandstone composition is attributed to the development of the High Arctic Large Igneous Province in the region. The relative constancy of sand composition and volume of volcanic detritus within the Carolinefjellet Formation suggests long term (? 20 M) stability of the sediment system and a large volcanic source area, consistent with LIP (Large Igneous Province) derivation, along with significant exposure of basement rocks. Sample spacing and sediment recycling and mixing do not allow detection of events that would have changed sandstone composition that were less than ? 1 M duration. Preservation of significant amounts of plagioclase in a sediment-starved shelf can be explained by relatively cold climatic conditions

    Iron ooid beds of the Carolinefjellet Formation, Spitsbergen, Norway

    No full text
    Iron ooid beds are unusual deposits that have been linked to greenhouse conditions and the transgressive flooding of shallow shelves, and which were globally prevalent during certain periods. Within the marine, Aptian–Albian, Carolinefjellet Formation of Spitsbergen, chamosite ooids have been found within distinctive sandstone beds at six localities, and at a consistent stratigraphic position within the basal Dalkjegla Member. Distinctive characteristics include the iron ooids themselves, a coarser grain size, intercalation with silty siderites, grading, cross-beds indicating offshore or longshore transport, and a lack of burrowing. The enclosing sands display planar and hummocky crossstratification and abundant oscillation ripple marks, and are interpreted as lagoon-attached bar complexes. The stratigraphic position and traits of the iron ooid sands are consistent with seaward storm transport and preservation within interbar swales. Ooids vary in shape considerably, and display evidence for multiple growth events. Nuclei of quartz, opaques, carbonate clasts and laminated crusts are typically encircled by finer grained tangential chamosite and opaque laminae, sometimes with outer overgrowths of calcite and/or radial chamosite. The Dalkjegla Member is the marine portion of a large-scale transgressive tract, attached to underlying fluvio-estuarine Helvetiafjellet Formation strata. A lagoonal environment associated with the basal shales of the Dalkjegla Member represents a logical setting, where riverine iron concentration and iron silicate growth could occur. The Spitsbergen iron ooid beds extend the known occurrence of Cretaceous examples, representing a less common High-Latitude example, and one not directly associated with a transgressive flooding surface
    corecore