185 research outputs found

    Hand Gesture Controlled Drones: An Open Source Library

    Full text link
    Drones are conventionally controlled using joysticks, remote controllers, mobile applications, and embedded computers. A few significant issues with these approaches are that drone control is limited by the range of electromagnetic radiation and susceptible to interference noise. In this study we propose the use of hand gestures as a method to control drones. We investigate the use of computer vision methods to develop an intuitive way of agent-less communication between a drone and its operator. Computer vision-based methods rely on the ability of a drone's camera to capture surrounding images and use pattern recognition to translate images to meaningful and/or actionable information. The proposed framework involves a few key parts toward an ultimate action to be taken. They are: image segregation from the video streams of front camera, creating a robust and reliable image recognition based on segregated images, and finally conversion of classified gestures into actionable drone movement, such as takeoff, landing, hovering and so forth. A set of five gestures are studied in this work. Haar feature-based AdaBoost classifier is employed for gesture recognition. We also envisage safety of the operator and drone's action calculating the distance based on computer vision for this task. A series of experiments are conducted to measure gesture recognition accuracies considering the major scene variabilities, illumination, background, and distance. Classification accuracies show that well-lit, clear background, and within 3 ft gestures are recognized correctly over 90%. Limitations of current framework and feasible solutions for better gesture recognition are discussed, too. The software library we developed, and hand gesture data sets are open-sourced at project website.Comment: ICDIS 201

    An improved border detection in dermoscopy images for density based clustering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. In current practice, dermatologists determine lesion area by manually drawing lesion borders. Therefore, automated assessment tools for dermoscopy images have become an important research field mainly because of inter- and intra-observer variations in human interpretation. One of the most important steps in dermoscopy image analysis is automated detection of lesion borders. To our knowledge, in our 2010 study we achieved one of the highest accuracy rates in the automated lesion border detection field by using modified density based clustering algorithm. In the previous study, we proposed a novel method which removes redundant computations in well-known spatial density based clustering algorithm, DBSCAN; thus, in turn it speeds up clustering process considerably.</p> <p>Findings</p> <p>Our previous study was heavily dependent on the pre-processing step which creates a binary image from original image. In this study, we embed a new distance measure to the existing algorithm. This provides twofold benefits. First, since new approach removes pre-processing step, it directly works on color images instead of binary ones. Thus, very important color information is not lost. Second, accuracy of delineated lesion borders is improved on 75% of 100 dermoscopy image dataset.</p> <p>Conclusion</p> <p>Previous and improved methods are tested within the same dermoscopy dataset along with the same set of dermatologist drawn ground truth images. Results revealed that the improved method directly works on color images without any pre-processing and generates more accurate results than existing method.</p

    Automatic delineation of malignancy in histopathological head and neck slides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histopathology, which is one of the most important routines of all laboratory procedures used in pathology, is decisive for the diagnosis of cancer. Experienced histopathologists review the histological slides acquired from biopsy specimen in order to outline malignant areas. Recently, improvements in imaging technologies in terms of histological image analysis led to the discovery of virtual histological slides. In this technique, a computerized microscope scans a glass slide and generates virtual slides at a resolution of 0.25 μm/pixel. As the recognition of intrinsic cancer areas is time consuming and error prone, in this study we develop a novel method to tackle automatic squamous cell carcinoma of the head and neck detection problem in high-resolution, wholly-scanned histopathological slides.</p> <p>Results</p> <p>A density-based clustering algorithm improved for this study plays a key role in the determination of the corrupted cell nuclei. Using the Support Vector Machines (SVMs) Classifier, experimental results on seven head and neck slides show that the proposed algorithm performs well, obtaining an average of 96% classification accuracy.</p> <p>Conclusion</p> <p>Recent advances in imaging technology enable us to investigate cancer tissue at cellular level. In this study we focus on wholly-scanned histopathological slides of head and neck tissues. In the context of computer-aided diagnosis, delineation of malignant regions is achieved using a powerful classification algorithm, which heavily depends on the features extracted by aid of a newly proposed cell nuclei clustering technique. The preliminary experimental results demonstrate a high accuracy of the proposed method.</p

    Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach

    Get PDF
    BACKGROUND: Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2–4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. RESULTS: The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. CONCLUSIONS: The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants’ SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1218-z) contains supplementary material, which is available to authorized users

    Lesion detection in demoscopy images with novel density-based and active contour approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Automated assessment tools for dermoscopy images have become an important field of research mainly because of inter- and intra-observer variations in human interpretation. One of the most important steps in dermoscopy image analysis is the detection of lesion borders, since many other features, such as asymmetry, border irregularity, and abrupt border cutoff, rely on the boundary of the lesion. </p> <p>Results</p> <p>To automate the process of delineating the lesions, we employed Active Contour Model (ACM) and boundary-driven density-based clustering (BD-DBSCAN) algorithms on 50 dermoscopy images, which also have ground truths to be used for quantitative comparison. We have observed that ACM and BD-DBSCAN have the same border error of 6.6% on all images. To address noisy images, BD-DBSCAN can perform better delineation than ACM. However, when used with optimum parameters, ACM outperforms BD-DBSCAN, since ACM has a higher recall ratio.</p> <p>Conclusion</p> <p>We successfully proposed two new frameworks to delineate suspicious lesions with i) an ACM integrated approach with sharpening and ii) a fast boundary-driven density-based clustering technique. ACM shrinks a curve toward the boundary of the lesion. To guide the evolution, the model employs the exact solution <abbrgrp><abbr bid="B27">27</abbr></abbrgrp> of a specific form of the Geometric Heat Partial Differential Equation <abbrgrp><abbr bid="B28">28</abbr></abbrgrp>. To make ACM advance through noisy images, an improvement of the model’s boundary condition is under consideration. BD-DBSCAN improves regular density-based algorithm to select query points intelligently.</p

    Biological activities of Liquidambar orientalis: antibiofilm, cytotoxicity, apoptosis, and miRNA expressions

    Get PDF
    Due to its strong biological, pharmacological, and medical activities and rich chemical content, Liquidambar orientalis, known for its resinous exudate storax, has a widespread and well-established ethnopharmacological use. Although it is known that storax has anticancer, antimicrobial, antioxidant, wound-healing and other ethnomedicinal properties, the number of existing scientific studies is very limited. In this context, the aims of this study were to determine the antibiofilm activity of storax and its cytotoxic and apoptotic effects in A549 lung cancer cells. In addition, with this study, it is also possible to make a very comprehensive biological evaluation by determining the effect of storax on certain microRNA expressions. According to our results, L. orientalis storax decreases cell proliferation in A549 lung cancer cells and the IC50 value was determined at 31.5 μg/mL at 24h. Storax also induces apoptosis via upregulating CASP3, 8, 9, and Bax gene expression and downregulating Bcl-2 expressions in A549 cells. Furthermore, storax decreases the expression of miR-146a, miR-21, and miR-223, while increasing the expression of miR-155. Storax inhibits biofilm formation and reduces the preformed biofilm of microbial strains including Staphylococcus aureus (ATCC 33862), Pseudomonas aeruginosa (ATCC 27853) and Candida albicans (ATCC 64548). The results suggest that storax has strong cytotoxic, apoptotic and antibiofilm properties and thus promising potential in medicine

    Analysis of density based and fuzzy c-means clustering methods on lesion border extraction in dermoscopy images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer-aided segmentation and border detection in dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopy images have become an important research field mainly because of inter- and intra-observer variations in human interpretation. In this study, we compare two approaches for automatic border detection in dermoscopy images: density based clustering (DBSCAN) and Fuzzy C-Means (FCM) clustering algorithms. In the first approach, if there exists enough density –greater than certain number of points- around a point, then either a new cluster is formed around the point or an existing cluster grows by including the point and its neighbors. In the second approach FCM clustering is used. This approach has the ability to assign one data point into more than one cluster.</p> <p>Results</p> <p>Each approach is examined on a set of 100 dermoscopy images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates; false positives and false negatives along with true positives and true negatives are quantified by comparing results with manually determined borders from a dermatologist. The assessments obtained from both methods are quantitatively analyzed over three accuracy measures: border error, precision, and recall. </p> <p>Conclusion</p> <p>As well as low border error, high precision and recall, visual outcome showed that the DBSCAN effectively delineated targeted lesion, and has bright future; however, the FCM had poor performance especially in border error metric.</p
    corecore