7 research outputs found

    Not Available

    No full text
    Not AvailableMango (Mangifera indica L.) has been cultivated and conserved in different agro-ecologies including Malihabad region in northern part of India, that is well known for housing diverse types (heirloom and commercial varieties). In the present study, 37 mango types comprising of 27 heirloom varieties from Malihabad region and 10 commercial varieties grown in North and Eastern India were assessed for morphological attributes and molecular diversity. The employed SSR markers amplified 2-13 alleles individually, cumulatively amplifying 124 alleles. These were studied for allelic diversity and genetic dissimilarity ranged from 0.035 to 0.892 arranging the varieties in three major clusters. The results revealed that majority of unique heirloom mangoes from Malihabad were different from the eastern part of the country. It is interesting to note Dashehari, a commercial variety from Malihabad was not aligned with heirloom varieties. Commercial varieties like Gulabkhas and Langra were placed in a separate group including Bombay Green, Himsagar, Dashehari, etc., indicating their dissimilarity with heirloom varieties at molecular level and thus, indicating importance for later from conservation point of view. Furthermore, the hierarchical clustering of varieties based on fruit morphology, assembled these into four groups largely influenced by fruit size. The maximum agreement subtree indicated seemingly good fit as thirteen varieties were arrayed in common grouping pattern. Appreciable dissimilarity among the heirloom varieties demonstrated by molecular analysis, underlines the importance for their on-farm conservation.Not Availabl

    Calculation of irradiance distribution on PV modules by combining sky and sensitivity maps

    No full text
    Photovoltaic (PV) modules receive both direct light from the sun and scattered light from the sky, ground and nearby objects. The calculation of incident irradiance becomes complex when nearby objects cast shadows or reflect sunlight onto the PV modules. In this paper a flexible irradiance model is presented that takes all these effects into account by combining a so-called sky map, obtained from the Perez model, with a sensitivity map, generated using a ray tracing software. This irradiation model is validated for a PV facade that combines PV modules with mirror reflectors and is shown to be a flexible tool to accurately predict the irradiance distribution.Photovoltaic Materials and DevicesElectrical Sustainable Energ

    Architecture of Polymers: Topological Structure–Properties Relationship

    No full text
    corecore