1 research outputs found

    Effect of the non-electrically conductive spindle on the viscosity measurements of nanofluids subjected to the magnetic field

    Get PDF
    The viscosity measurements of magnetic nanofluid subjected to the magnetic field are indispensable in various heat transfer studies. Intention of the present discussion is to critically analyze the magnetic field's influence on the working of two viscometers; a Glass capillary viscometer and a DV-E Brookfield viscometer. The novelty of the present study is in the identification of the underlying reason for the massive escalation in viscosity when the magnetic nanofluid is subjected to magnetic field and rectification of the error caused. The stainless-steel spindle in the viscometer is replaced with a non-electrically and non-magnetically conductive nylon spindle to rectify the error. The dynamic viscosity of magnesium ferrite nanofluid of different volume fractions at a temperature of 25 °C in the occurrence of magnetic field was measured. The viscosity of magnetic nanofluid measured using DV-E Brookfield viscometer escalated to a maximum of 725% over the same measured using glass capillary viscometer with the magnetic field application. The application of the nylon spindle in the viscometer eliminates the error caused due to the eddy current formation in the spindle. Therefore, this study recommends using viscometers with non-electrically and non-magnetically conductive spindles for accuracy while measuring the viscosity of magnetic fluids.The Karunya Institute of Technology and Sciences, India, through the Karunya Short Term Research Grant.http://www.elsevier.com/locate/colsurfa2022-08-05hj2022Mechanical and Aeronautical Engineerin
    corecore