45 research outputs found

    Local muscle metabolic demand induced by neuromuscular electrical stimulation and voluntary contractions at different force levels: a NIRS study

    Get PDF
    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL

    Exergaming as a viable therapeutic tool to improve static and dynamic balance among older adults and people with idiopathic Parkinson\u27s disease: a systematic review and meta-analysis

    Full text link
    The use of virtual reality games (known as "exergaming") as a neurorehabilitation tool is gaining interest. Therefore, we aim to collate evidence for the effects of exergaming on the balance and postural control of older adults and people with idiopathic Parkinson\u27s disease (IPD). Six electronic databases were searched, from inception to April 2015, to identify relevant studies. Standardized mean differences (SMDs) and 95% confidence intervals (CI) were used to calculate effect sizes between experimental and control groups. I (2) statistics were used to determine levels of heterogeneity. 325 older adults and 56 people with IPD who were assessed across 11 -studies. The results showed that exergaming improved static balance (SMD 1.069, 95% CI 0.563-1.576), postural control (SMD 0.826, 95% CI 0.481-1.170), and dynamic balance (SMD -0.808, 95% CI -1.192 to -0.424) in healthy older adults. Two IPD studies showed an improvement in static balance (SMD 0.124, 95% CI -0.581 to 0.828) and postural control (SMD 2.576, 95% CI 1.534-3.599). Our findings suggest that exergaming might be an appropriate therapeutic tool for improving balance and postural control in older adults, but more -large-scale trials are needed to determine if the same is true for people with IPD

    Less effort, better results: how does music act on prefrontal cortex in older adults during verbal encoding? An fNIRS study

    Get PDF
    Several neuroimaging studies of cognitive aging revealed deficits in episodic memory abilities as a result of prefrontal cortex (PFC) limitations. Improving episodic memory performance despite PFC deficits is thus a critical issue in aging research. Listening to music stimulates cognitive performance in several non-purely musical activities (e.g., language and memory). Thus, music could represent a rich and helpful source during verbal encoding and therefore help subsequent retrieval. Furthermore, such benefit could be reflected in less demand of PFC, which is known to be crucial for encoding processes. This study aimed to investigate whether music may improve episodic memory in older adults while decreasing the PFC activity. Sixteen healthy older adults (μ = 64.5 years) encoded lists of words presented with or without a musical background while their dorsolateral prefrontal cortex (DLPFC) activity was monitored using a eight-channel continuous-wave near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis, The Netherlands). Behavioral results indicated a better source-memory performance for words encoded with music compared to words encoded with silence (p < 0.05). Functional NIRS data revealed bilateral decrease of oxyhemoglobin values in the music encoding condition compared to the silence condition (p < 0.05), suggesting that music modulates the activity of the DLPFC during encoding in a less-demanding direction. Taken together, our results indicate that music can help older adults in memory performances by decreasing their PFC activity. These findings open new perspectives about music as tool for episodic memory rehabilitation on special populations with memory deficits due to frontal lobe damage such as Alzheimer\u27s patients

    Effects of muscle contractions on biceps brachii oxygenation investigated by near-infrared spectroscopy

    No full text
    Oxidative metabolism is the dominant source of energy for skeletal muscle. To investigate muscle oxidative metabolism, it is necessary to measure muscle oxygen (O2) consumption during exercise. Near-infrared spectroscopy (NIRS) allows for the noninvasive investigation of muscle oxidative metabolism during exercise at a high time resolution. However, limited studies have used NIRS to compare oxidative metabolic responses of the biceps brachii during lengthening (eccentric), shortening (concentric) and static (isometric) voluntary contractions, and electrically evoked isometric contractions. Therefore, the overall purpose of this thesis was to investigate the effects of muscle contractions on biceps brachii oxygenation and haemodynamics using NIRS..

    The effects of a repeated bout of eccentric exercise on indices of muscle damage and delayed onset muscle soreness

    No full text
    This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2, at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30±5%) and flexed elbow angle (20±4%) was observed following ECC2 (

    The effects of repeated bout of eccentric exercise on indices of muscle damage and delayed onset muscle soreness

    No full text
    Etude des marqueurs de lésions musculaires à la suite de contractions isocinétiques excentriques répétées des fléchisseurs du coude avec un intervalle de récupération réduit (2 minutes). Mesure des indices de douleur musculaire ou courbatures, de la créatine kinase plasmatique, de l'angle de flexion du coude et du couple de forces isométrique

    Effects of transcranial direct current stimulation of the motor cortex on prefrontal cortex activation during a neuromuscular fatigue task: An fNIRS study

    No full text
    This study investigated whether manipulation of motor cortex excitability by transcranial direct current stimulation (tDCS) modulates neuromuscular fatigue and functional near-infrared spectroscopy (fNIRS)-derived prefrontal cortex (PFC) activation. Fifteen healthy men (27.7 ± 8.4 years) underwent anodal (2 mA, 10 min) and sham (2 mA, first 30 s only) tDCS delivered to the scalp over the right motor cortex. Subjects initially performed a baseline sustained submaximal (30 % maximal voluntary isometric contraction, MVC) isometric contraction task (SSIT) of the left elbow flexors until task failure, which was followed 50 min later by either an anodal or sham treatment condition, then a subsequent posttreatment SSIT. Endurance time (ET), torque integral (TI), and fNIRS-derived contralateral PFC oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentration changes were determined at task failure. Results indicated that during the baseline and posttreatment SSIT, there were no significant differences in TI and ET, and increases in fNIRS-derived PFC activation at task failure were observed similarly regardless of the tDCS conditions. This suggests that the PFC neuronal activation to maintain muscle force production was not modulated by anodal tDCS

    Comparison of repeated transcranial stimulation and transcranial direct-current stimulation on primary motor cortex excitability and inhibition: A pilot study

    No full text
    Repeated transcranial magnetic stimulation (rTMS) is a well-known clinical neuromodulation technique, but transcranial direct-current stimulation (tDCS) is rapidly growing interest for neurorehabilitation applications. Both methods (contralesional hemisphere inhibitory low-frequency: LF-rTMS or lesional hemisphere excitatory anodal: a-tDCS) have been employed to modify the interhemispheric imbalance following stroke. The aim of this pilot study was to compare aHD-tDCS (anodal high-definition tDCS) of the left M1 (2 mA, 20 min) and LF-rTMS of the right M1 (1 Hz, 20 min) to enhance excitability and reduce inhibition of the left primary motor cortex (M1) in five healthy subjects. Single-pulse TMS was used to elicit resting and active (low level muscle contraction, 5% of maximal electromyographic signal) motor-evoked potentials (MEPs) and cortical silent periods (CSPs) from the right and left extensor carpi radialis muscles at Baseline, immediately and 20 min (Post-Stim-20) after the end of each stimulation protocol. LF-rTMS or aHD-tDCS significantly increased right M1 resting and active MEP amplitude at Post-Stim-20 without any CSP modulation and with no difference between methods. In conclusion, this pilot study reported unexpected M1 excitability changes, which most likely stems from variability, which is a major concern in the field to consider
    corecore