15 research outputs found
Acute impacts of the deer ked (Lipoptena cervi) infestation on reindeer (Rangifer tarandus tarandus) behaviour
Abstract
Blood-sucking ectoparasites have often a strong impact on the behaviour of their hosts. The annual insect harassment of reindeer (Rangifer tarandus tarandus) has increased in the southern part of the Finnish reindeer herding area because of the recent invasion of a blood-feeding ectoparasitic louse-fly, the deer ked (Lipoptena cervi). We studied the impact of the deer ked on the behaviour of reindeer. Twelve reindeer were infested with a total of 300 keds/reindeer on six occasions in a 5-week period during the deer ked flight season in autumn, while six non-infested reindeer were used as controls. Behavioural patterns indicating potential stress were monitored by visual observation from August to December. The infested reindeer displayed more incidences of restless behaviour than the controls. Shaking and scratching were the most common forms of restless behaviour after infestation of deer keds. Increased grooming was also observed after the transplantation and also later, 1 month after the infestation. Based on the results, the deer ked infestation can cause acute behavioural disturbance in reindeer and, thus, could pose a potential threat to reindeer welfare. Antiparasitic treatment with, e.g. ivermectin, may increase the welfare of parasitized reindeer by reducing deer keds. If the deer ked infestation intensity on the reindeer herding area increases and restless behaviour of reindeer becomes more common, the present results can help in further evaluation of the duration and magnitude of behavioural changes
Increased n-6 polyunsaturated fatty acids indicate pro- and anti-inflammatory lipid modifications in synovial membranes with rheumatoid arthritis
Abstract
Emerging evidence suggests that fatty acids (FAs) and their lipid mediator derivatives can induce both beneficial and detrimental effects on inflammatory processes and joint degradation in osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA). The present study characterized the detailed FA signatures of synovial membranes collected during knee replacement surgery of age- and gender-matched OA and RA patients (n = 8/diagnosis). The FA composition of total lipids was determined by gas chromatography and analyzed with univariate and multivariate methods supplemented with hierarchical clustering (HC), random forest (RF)-based classification of FA signatures, and FA metabolism pathway analysis. RA synovium lipids were characterized by reduced proportions of shorter-chain saturated FAs (SFAs) and elevated percentages of longer-chain SFAs and monounsaturated FAs, alkenyl chains, and C20 n-6 polyunsaturated FAs compared to OA synovium lipids. In HC, FAs and FA-derived variables clustered into distinct groups, which preserved the discriminatory power of the individual variables in predicting the RA and OA inflammatory states. In RF classification, SFAs and 20:3n-6 were among the most important FAs distinguishing RA and OA. Pathway analysis suggested that elongation reactions of particular long-chain FAs would have increased relevance in RA. The present study was able to determine the individual FAs, FA groups, and pathways that distinguished the more inflammatory RA from OA. The findings suggest modifications of FA elongation and metabolism of 20:4n-6, glycerophospholipids, sphingolipids, and plasmalogens in the chronically inflamed RA synovium. These FA alterations could have implications in lipid mediator synthesis and potential as novel diagnostic and therapeutic tools
Synovial fluid fatty acid profiles are differently altered by inflammatory joint pathologies in the shoulder and knee joints
Abstract
Anomalies of fatty acid (FA) metabolism characterize osteoarthritis (OA) and rheumatoid arthritis (RA) in the knee joint. No previous study has investigated the synovial fluid (SF) FA manifestations in these aging-related inflammatory diseases in the shoulder. The present experiment compared the FA alterations between the shoulder and knee joints in patients with end-stage OA or end-stage RA. SF samples were collected during glenohumeral or knee joint surgery from trauma controls and from OA and RA patients (n = 42). The FA composition of SF total lipids was analyzed by gas chromatography with flame ionization and mass spectrometric detection and compared across cohorts. The FA signatures of trauma controls were mostly uniform in both anatomical locations. RA shoulders were characterized by elevated percentages of 20:4n-6 and 22:6n-3 and with reduced proportions of 18:1n-9. The FA profiles of OA and RA knees were relatively uniform and displayed lower proportions of 18:2n-6, 22:6n-3 and total n-6 polyunsaturated FAs (PUFAs). The results indicate location- and disease-dependent differences in the SF FA composition. These alterations in FA profiles and their potential implications for the production of PUFA-derived lipid mediators may affect joint lubrication, synovial inflammation and pannus formation as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases
Raccoon dog model shows preservation of bone during prolonged catabolism and reduced physical activity
Abstract
The raccoon dog (Nyctereutes procyonoides) is a promising animal model capable of preventing disuse-induced osteoporosis. Previous data suggest that this species resembles bears in the preservation of bone mass and biomechanical properties during prolonged passivity and catabolism. This longitudinal study examined the osteological properties of tibiae in farm-bred raccoon dogs that were either fed or fasted (n=6 per group) for a 10 week period. Peripheral quantitative computed tomography was utilized and plasma markers of bone turnover measured before fasting and at 9 weeks followed by mechanical testing (three-point bending), micro-computed tomography and Fourier transform infrared imaging at 10 weeks. Passive wintering with prolonged catabolism (body mass loss 32%) had no significant effects on bone mineralization, porosity or strength. The concentration of C-terminal telopeptide of type I collagen, indicative of bone resorption, increased in the plasma of the fasted raccoon dogs, while the bone formation markers were unchanged. The levels of 25-hydroxyvitamin D were reduced in the fasted animals. Based on these data, the preservation of bone in wintering raccoon dogs shares characteristics with that of bears with no apparent decrease in the formation of bone but increased resorption. To conclude, raccoon dogs were able to minimize bone loss during a 10 week period of catabolism and passivity
Characterization of hyaluronan-coated extracellular vesicles in synovial fluid of patients with osteoarthritis and rheumatoid arthritis
Abstract
Background: Hyaluronic acid (HA) is the major extracellular matrix glycosaminoglycan with a reduced synovial fluid (SF) concentration in arthropathies. Cell-derived extracellular vesicles (EV) have also been proposed to contribute to pathogenesis in joint diseases. It has recently been shown that human SF contains HA-coated EV (HA–EV), but their concentration and function in joint pathologies remain unknown.
Methods: The aim of the present study was to develop an applicable method based on confocal laser scanning microscopy (CLSM) and image analysis for the quantification of EV, HA-particles, and HA–EV in the SF of the human knee joint. Samples were collected during total knee replacement surgery from patients with end-stage rheumatoid arthritis (RA, n = 8) and osteoarthritis (OA, n = 8), or during diagnostic/therapeutic arthroscopy unrelated to OA/RA (control, n = 7). To characterize and quantify EV, HA-particles, and HA–EV, SF was double-stained with plasma membrane and HA probes and visualized by CLSM. Comparisons between the patient groups were performed with the Kruskal–Wallis analysis of variance.
Results: The size distribution of EV and HA-particles was mostly similar in the study groups. Approximately 66% of EV fluorescence was co-localized with HA verifying that a significant proportion of EV carry HA. The study groups were clearly separated by the discriminant analysis based on the CLSM data. The intensities of EV and HA-particle fluorescences were lower in the RA than in the control and OA groups.
Conclusions: CLSM analysis offers a useful tool to assess HA–EV in SF samples. The altered EV and HA intensities in the RA SF could have possible implications for diagnostics and therapy