36 research outputs found

    Target dark matter detection rates in models with a well-tempered neutralino

    Get PDF
    In the post-LEP2 era, and in light of recent measurements of the cosmic abundance of cold dark matter (CDM) in the universe from WMAP, many supersymmetric models tend to predict 1. an overabundance of CDM and 2. pessimistically low rates for direct detection of neutralino dark matter. However, in models with a ``well-tempered neutralino'', where the neutralino composition is adjusted to give the measured abundance of CDM, the neutralino is typically of the mixed bino-wino or mixed bino-higgsino state. Along with the necessary enhancement to neutralino annihilation rates, these models tend to give elevated direct detection scattering rates compared to predictions from SUSY models with universal soft breaking terms. We present neutralino direct detection cross sections from a variety of models containing a well-tempered neutralino, and find cross section asymptotes with detectable scattering rates. These asymptotic rates provide targets that various direct CDM detection experiments should aim for. In contrast, in models where the neutralino mass rather than its composition is varied to give the WMAP relic density via either resonance annihilation or co-annihilation, the neutralino remains essentially bino-like, and direct detection rates may be below the projected reaches of all proposed experiments.Comment: 13 pages including 1 EPS figur

    Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that chi_2^0 two-body decay modes are usually closed. This means that dilepton mass edges-- the starting point for cascade decay reconstruction at the CERN LHC-- should be accessible over almost all of parameter space. Measurement of the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe.Comment: 29 pages including 19 eps figure

    Direct, Indirect and Collider Detection of Neutralino Dark Matter In SUSY Models with Non-universal Higgs Masses

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking, universality of soft SUSY breaking sfermion masses m_0 is motivated by the need to suppress unwanted flavor changing processes. The same motivation, however, does not apply to soft breaking Higgs masses, which may in general have independent masses from matter scalars at the GUT scale. We explore phenomenological implications of both the one-parameter and two-parameter non-universal Higgs mass models (NUHM1 and NUHM2), and examine the parameter ranges compatible with Omega_CDM h^2, BF(b --> s,gamma) and (g-2)_mu constraints. In contrast to the mSUGRA model, in both NUHM1 and NUHM2 models, the dark matter A-annihilation funnel can be reached at low values of tan(beta), while the higgsino dark matter annihilation regions can be reached for low values of m_0. We show that there may be observable rates for indirect and direct detection of neutralino cold dark matter in phenomenologically aceptable ranges of parameter space. We also examine implications of the NUHM models for the Fermilab Tevatron, the CERN LHC and a Sqrt(s)=0.5-1 TeV e+e- linear collider. Novel possibilities include: very light s-top_R, s-charm_R squark and slepton_L masses as well as light charginos and neutralinos and H, A and H^+/- Higgs bosons.Comment: LaTeX, 48pages, 26 Figures. The version with high resolution Figures is available at http://hep.pa.msu.edu/belyaev/public/projects/nuhm/nuhm.p

    Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter

    Get PDF
    In supersymmetric models with non-universal gaugino masses, it is possible to have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the gaugino eigenstates experience little mixing so that the lightest SUSY particle remains either pure bino or pure wino. The neutralino relic density can only be brought into accord with the WMAP measured value when bino-wino co-annihilation (BWCA) acts to enhance the dark matter annihilation rate. We map out parameter space regions and mass spectra which are characteristic of the BWCA scenario. Direct and indirect dark matter detection rates are shown to be typically very low. At collider experiments, the BWCA scenario is typified by a small mass gap m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays of \tilde Z_2 are not allowed. However, in this case the second lightest neutralino has an enhanced loop decay branching fraction to photons. While the photonic neutralino decay signature looks difficult to extract at the Fermilab Tevatron, it should lead to distinctive events at the CERN LHC and at a linear e^+e^- collider.Comment: 44 pages, 21 figure

    Sparticle mass spectra from SU(5) SUSY GUT models with bτb-\tau Yukawa coupling unification

    Full text link
    Supersymmetric grand unified models based on the gauge group SU(5) often require in addition to gauge coupling unification, the unification of b-quark and τ\tau-lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space under the condition of bτb-\tau Yukawa coupling unification using 2-loop MSSM RGEs including full 1-loop threshold effects. The Yukawa-unified solutions break down into two classes. Solutions with low tan\beta ~3-11 are characterized by gluino mass ~1-4 TeV and squark mass ~1-5 TeV. Many of these solutions would be beyond LHC reach, although they contain a light Higgs scalar with mass <123 GeV and so may be excluded should the LHC Higgs hint persist. The second class of solutions occurs at large tan\beta ~35-60, and are a subset of tbτt-b-\tau unified solutions. Constraining only bτb-\tau unification to ~5% favors a rather light gluino with mass ~0.5-2 TeV, which should ultimately be accessible to LHC searches. While our bτb-\tau unified solutions can be consistent with a picture of neutralino-only cold dark matter, invoking additional moduli or Peccei-Quinn superfields can allow for all of our Yukawa-unified solutions to be consistent with the measured dark matter abundance.Comment: 19 pages, 5 figures, 1 table, PDFLate

    What if Supersymmetry Breaking Unifies beyond the GUT Scale?

    Full text link
    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, MinM_{in}, above the GUT scale, \mgut. We assume that the scalar masses and gaugino masses have common values, m0m_0 and m1/2m_{1/2} respectively, at MinM_{in}. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to \mgut, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as MinM_{in} increases. This has the consequence, as we show in (m1/2,m0)(m_{1/2}, m_0) planes for several different values of tanβ\tan \beta, that the stau coannihilation region shrinks as MinM_{in} increases, and we delineate the regions of the (Min,tanβ)(M_{in}, \tan \beta) plane where it is absent altogether. Moreover, as MinM_{in} increases, the focus-point region recedes to larger values of m0m_0 for any fixed tanβ\tan \beta and m1/2m_{1/2}. We conclude that the regions of the (m1/2,m0)(m_{1/2}, m_0) plane that are commonly favoured in phenomenological analyses tend to disappear at large MinM_{in}.Comment: 24 pages with 11 eps figures; references added, some figures corrected, discussion extended and figure added; version to appear in EPJ

    Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking

    Full text link
    While the constrained minimal supersymmetric standard model (CMSSM) with universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0, defined at some high energy scale (usually taken to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a relation between the trilinear and bilinear soft supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a consequence, tan(\beta) is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can introduce new parameters to the K\"ahler potential which are associated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending on the value of A_0, one may have a gravitino or a neutralino dark matter candidate. We also consider the consequences of imposing the universality conditions above the GUT scale. This GM extension provides a natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange

    Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

    Full text link
    The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However, the recent evidence from Atlas and CMS on a light Higgs scalar with mass m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms -- already highly stressed by the latest Atlas/CMS results on SUSY searches -- are nearly eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV. Furthermore, neutralino annihilation via the A-resonance is essentially ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking term A_0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure

    A comparison between the detection of gamma rays and positrons from neutralino annihilation

    Full text link
    We study the indirect detection of neutralino dark matter using positrons and gamma rays from its annihilation in the galactic halo. Considering the HESS data as the spectrum constituting the gamma--ray background, we compare the prospects for the experiments GLAST and PAMELA in a general supergravity framework with non--universal scalar and gaugino masses. We show that with a boost factor of about 10, PAMELA will be competitive with GLAST for typical NFW cuspy profiles.Comment: 18 pages, 6 figures, 1 reference added. Final version to appear in JCA

    Collider, direct and indirect detection of supersymmetric dark matter

    Full text link
    We present an overview of supersymmetry searches, both at collider experiments and via searches for dark matter (DM). We focus on three DM possibilities in the SUSY context: the thermally produced neutralino, a mixture of axion and axino, and the gravitino, and compare and contrast signals that may be expected at colliders, in direct detection (DD) experiments searching of DM relics left over from the Big Bang, and indirect detection (ID) experiments designed to detect the products of DM annihilations within the solar interior or galactic halo. Detection of DM particles using multiple strategies provides complementary information that may shed light on the new physics associated with the dark matter sector. In contrast to the mSUGRA model where the measured cold DM relic density restricts us to special regions mostly on the edge of the m_0-m_{1/2} plane, the entire parameter plane becomes allowed if the universality assumption is relaxed in models with just one additional parameter. Then, thermally produced neutralinos with a well-tempered mix of wino, bino and higgsino components, or with a mass adjusted so that their annihilation in the early universe is Higgs-resonance-enhanced, can be the DM. Well-tempered neutralinos typically yield heightened rates for DD and ID experiments compared to generic predictions from minimal supergravity. If instead DM consists of axinos (possibly together with axions) or gravitinos, then there exists the possibility of detection of quasi-stable next-to-lightest SUSY particles at colliding beam experiments, with especially striking consequences if the NLSP is charged, but no DD or ID detection. The exception for mixed axion/axino DM is that DD of axions may be possible.Comment: 28 pages, 11 eps figures; invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics
    corecore