3 research outputs found
Copolymerization of 4-Acetylphenyl Methacrylate with Ethyl Methacrylate: Synthesis, Characterization, Monomer Reactivity Ratios, and Thermal Properties
Methacrylates have high glass transition temperature (Tg) values and high thermal stability. A new methacrylate copolymer, poly(4-acetylphenyl methacrylate-co-ethyl methacrylate) (APMA-co-EMA), was synthesized. The thermal behaviors of copolymers were investigated by differential scanning calorimetry and thermogravimetric analysis. They behaved as new single polymers with single Tg’s and the thermal stability of the copolymers increased with increasing 4-acetylphenyl methacrylate (APMA) fraction, leading to the manufacture of copolymers with desired Tg values.
Structure and composition of copolymers for a wide range of monomer feed ratios were determined by Fourier transform infrared (FT-IR) and 1H-nuclear magnetic resonance (1H-NMR) spectroscopic techniques. Copolymerization reactions were continued up to 40% conversions. The monomer reactivity ratios for copolymer system were determined by the Kelen-Tüdös (ra(APMA)=0.81; rb(EMA)=0.61) and extended Kelen-Tüdös (ra=0.77; rb=0.54) methods and a nonlinear least squares (ra=0.74; rb=0.49) method
Copolymerization of 4-Acetylphenyl Methacrylate with Ethyl Methacrylate: Synthesis, Characterization, Monomer Reactivity Ratios, and Thermal Properties
Methacrylates have high glass transition temperature ( ) values and high thermal stability. A new methacrylate copolymer, poly(4-acetylphenyl methacrylate-co-ethyl methacrylate) (APMA-co-EMA), was synthesized. The thermal behaviors of copolymers were investigated by differential scanning calorimetry and thermogravimetric analysis. They behaved as new single polymers with single 's and the thermal stability of the copolymers increased with increasing 4-acetylphenyl methacrylate (APMA) fraction, leading to the manufacture of copolymers with desired values. Structure and composition of copolymers for a wide range of monomer feed ratios were determined by Fourier transform infrared (FT-IR) and 1 H-nuclear magnetic resonance ( 1 H-NMR) spectroscopic techniques. Copolymerization reactions were continued up to 40% conversions. The monomer reactivity ratios for copolymer system were determined by the Kelen-Tüdös ( (APMA) = 0.81; (EMA) = 0.61) and extended Kelen-Tüdös ( = 0.77; = 0.54) methods and a nonlinear least squares ( = 0.74; = 0.49) method