9,703 research outputs found

    Towards Chemical Constraints on Hot Jupiter Migration

    Full text link
    The origin of hot Jupiters -- gas giant exoplanets orbiting very close to their host stars -- is a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in-situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses. In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily explained by giant planets forming at large orbital separations, either by core accretion or gravitational instability, and migrating to close-in orbits via disk-free mechanisms involving dynamical encounters. Such planets also contain solar or super-solar C/O ratios. On the contrary, hot Jupiters with super-solar O and C abundances can be explained by a variety of formation-migration pathways which, however, lead to solar or sub-solar C/O ratios. Current estimates of low oxygen abundances in hot Jupiter atmospheres may be indicative of disk-free migration mechanisms. We discuss open questions in this area which future studies will need to investigate.Comment: Accepted for publication in ApJ Letter

    Non-Hermitian von Roos Hamiltonian's η\eta-weak-pseudo-Hermiticity, isospectrality and exact solvability

    Full text link
    A complexified von Roos Hamiltonian is considered and a Hermitian first-order intertwining differential operator is used to obtain the related position dependent mass η\eta-weak-pseudo-Hermitian Hamiltonians. Using a Liouvillean-type change of variables, the η\eta-weak-pseudo-Hermitian von Roos Hamiltonians H(x) are mapped into the traditional Schrodinger Hamiltonian form H(q), where exact isospectral correspondence between H(x) and H(q) is obtained. Under a user-friendly position dependent mass settings, it is observed that for each exactly-solvable η\eta-weak-pseudo-Hermitian reference-Hamiltonian H(q)there is a set of exactly-solvable η\eta-weak-pseudo-Hermitian isospectral target-Hamiltonians H(x). A non-Hermitian PT-symmetric Scarf II and a non-Hermitian periodic-type PT-symmetric Samsonov-Roy potentials are used as reference models and the corresponding η\eta-weak-pseudo-Hermitian isospectral target-Hamiltonians are obtained.Comment: 11 pages, no figures
    • …
    corecore