270 research outputs found

    Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission II. Inverse Compton Radiation Pair Fronts

    Get PDF
    We investigate the production of electron-positron pairs by inverse Compton scattered (ICS) photons above a pulsar polar cap (PC) and surface heating by returning positrons. This paper is a continuation of our self-consistent treatment of acceleration, pair dynamics and electric field screening above pulsar PCs. We calculate the altitude of the inverse Compton pair formation fronts, the flux of returning positrons and present the heating efficiencies and X-ray luminosities. We revise pulsar death lines implying cessation of pair formation, and present them in surface magnetic field-period space. We find that virtually all known radio pulsars are capable of producing pairs by resonant and non-resonant ICS photons radiated by particles accelerated above the PC in a pure star-centered dipole field, so that our ICS pair death line coincides with empirical radio pulsar death. Our calculations show that ICS pairs are able to screen the accelerating electric field only for high neutron star surface temperatures and magnetic fields. We argue that such screening at ICS pair fronts occurs locally, slowing but not turning off acceleration of particles until screening can occur at a curvature radiation (CR) pair front at higher altitude. In the case where no screening occurs above the PC surface, we anticipate that the pulsar gamma-ray luminosity will be a substantial fraction of its spin-down luminosity. The X-ray luminosity resulting from PC heating by ICS pair fronts is significantly lower than the PC heating luminosity from CR pair fronts, which dominates for most pulsars. PC heating from ICS pair fronts is highest in millisecond pulsars, which cannot produce CR pairs, and may account for observed thermal X-ray components in the spectra of these old pulsars.Comment: 29 pages, 10 figures, accepted for publication in Ap

    Pulsar X-Ray and Gamma-Ray Pulse Profiles: Constraint on Obliquity and Observer Angles

    Get PDF
    We model the thermal X-ray profiles of Geminga, Vela and PSR 0656+14, which have also been detected as gamma-ray pulsars, to constrain the phase space of obliquity and observer angles required to reproduce the observed X-ray pulsed fractions and pulse widths. These geometrical constraints derived from the X-ray light curves are explored for various assumptions about surface temperature distribution and flux anisotropy caused by the magnetized atmosphere. We include curved spacetime effects on photon trajectories and magnetic field. The observed gamma-ray pulse profiles are double peaked with phase separations of 0.4 - 0.5 between the peaks. Assuming that the gamma-ray profiles are due to emission in a hollow cone centered on the magnetic pole, we derive the constraints on the phase space of obliquity and observer angles, for different gamma-ray beam sizes, required to produce the observed gamma-ray peak phase separations. We compare the constraints from the X-ray emission to those derived from the observed gamma-ray pulse profiles, and find that the overlapping phase space requires both obliquity and observer angles to be smaller than 20-30 degrees, implying gamma-ray beam opening angles of at most 30-35 degrees.Comment: 29 pages, 9 embedded figures, AASTEX v.4, To appear in ApJ, June 20, 1998 (Vol. 499

    High-Energy Emission From Millisecond Pulsars

    Full text link
    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons at 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV.Comment: 34 pages, 6 figures, accepted for publication in Astrophysical Journa

    Electrodynamics of Magnetars IV: Self-Consistent Model of the Inner Accelerator, with Implications for Pulsed Radio Emission

    Full text link
    We consider the voltage structure in the open-field circuit and outer magnetosphere of a magnetar. The standard polar-cap model for radio pulsars is modified significantly when the polar magnetic field exceeds 1.8x10^{14} G. Pairs are created by accelerated particles via resonant scattering of thermal X-rays, followed by the nearly instantaneous conversion of the scattered photon to a pair. A surface gap is then efficiently screened by e+- creation, which regulates the voltage in the inner part of the circuit to ~10^9 V. We also examine the electrostatic gap structure that can form when the magnetic field is somewhat weaker, and deduce a voltage 10-30 times larger over a range of surface temperatures. We examine carefully how the flow of charge back to the star above the gap depends on the magnitude of the current that is extracted from the surface of the star, on the curvature of the magnetic field lines, and on resonant drag. The rates of different channels of pair creation are determined self-consistently, including the non-resonant scattering of X-rays, and collisions between gamma rays and X-rays. We find that the electrostatic gap solution has too small a voltage to sustain the observed pulsed radio output of magnetars unless i) the magnetic axis is nearly aligned with the rotation axis and the light of sight; or ii) the gap is present on the closed as well as the open magnetic field lines. Several properties of the radio magnetars -- their rapid variability, broad pulses, and unusually hard radio spectra -- are consistent with a third possibility, that the current in the outer magnetosphere is strongly variable, and a very high rate of pair creation is sustained by a turbulent cascade.Comment: 32 pages, submitted to the Astrophysical Journa

    Optical schemes of spectrographs with a diffractive optical element in a converging beam

    Get PDF
    Optical schemes of spectrographs based on transmission concave holographic gratings working in converging beams are considered. General description of the design techniques are provided. Each of them is supported by a certain example with calculation and modeling results. In particular, it’s shown that combination of such element with a spherical wedge allows to create a spectrograph with correction of astigmatism and a variable-dispersion spectrograph

    Mechanisms for High-frequency QPOs in Neutron Star and Black Hole Binaries

    Get PDF
    We explain the millisecond variability detected by Rossi X-ray Timing Explorer (RXTE) in the X-ray emission from a number of low mass X-ray binary systems (Sco X-1, 4U1728-34, 4U1608-522, 4U1636-536, 4U0614+091, 4U1735-44, 4U1820-30, GX5-1 and etc) in terms of dynamics of the centrifugal barrier, a hot boundary region surrounding a neutron star. We demonstrate that this region may experience the relaxation oscillations, and that the displacements of a gas element both in radial and vertical directions occur at the same main frequency, of order of the local Keplerian frequency. We show the importance of the effect of a splitting of the main frequency produced by the Coriolis force in a rotating disk for the interpretation of a spacing between the QPO peaks. We estimate a magnitude of the splitting effect and present a simple formula for the whole spectrum of the split frequencies. It is interesting that the first three lowest-order overtones fall in the range of 200-1200 Hz and match the kHz-QPO frequencies observed by RXTE. Similar phenomena should also occur in Black Hole (BH) systems, but, since the QPO frequency is inversely proportional to the mass of a compact object, the frequency of the centrifugal-barrier oscillations in the BH systems should be a factor of 5-10 lower than that for the NS systems. The X-ray spectrum formed in this region is a result of upscattering of a soft radiation (from a disk and a NS surface) off relatively hot electrons in the boundary layer. We also briefly discuss some alternative QPO models, including a possibility of acoustic oscillations in the boundary layer, the proper stellar rotation, and g-mode disk oscillations.Comment: The paper is coming out in the Astrophysical Journal in the 1st of May issue of 199

    Particle Acceleration Zones Above Pulsar Polar Caps: Electron and Positron Pair Formation Fronts

    Get PDF
    We investigate self-consistent particle acceleration near a pulsar polar cap (PC) by the electrostatic field due to the effect of inertial frame dragging. Test particles gain energy from the electric field parallel to the open magnetic field lines and lose energy by both curvature radiation (CR) and resonant and non-resonant inverse Compton scattering (ICS) with soft thermal X-rays from the neutron star (NS) surface. Gamma-rays radiated by electrons accelerated from the stellar surface produce pairs in the strong magnetic field, which screen the electric field beyond a pair formation front (PFF). Some of the created positrons can be accelerated back toward the surface and produce gamma-rays and pairs that create another PFF above the surface. We find that ICS photons control PFF formation near the surface, but due to the different angles at which the electron and positron scatter the soft photons, positron initiated cascades develop above the surface and screen the accelerating electric field. Stable acceleration from the NS surface is therefore not possible in the presence of dominant ICS energy losses. However, we find that stable acceleration zones may occur at some distance above the surface, where CR dominates the electron and positron energy losses, and there is up-down symmetry between the electron and positron PFFs. We examine the dependence of CR-controlled acceleration zone voltage, width and height above the surface on parameters of the pulsar and its soft X-ray emission. For most pulsars, we find that acceleration will start at a height of 0.5 - 1 stellar radii above the NS surface.Comment: 46 pages, 12 embedded figures, accepted for publication in Ap

    Moderate-resolution holographic spectrograph

    Get PDF
    © 2016, Pleiades Publishing, Ltd.We present a new scheme of a moderate-resolution spectrograph based on a cascade of serial holographic gratings each of which produces an individual spectrum with a resolution of about 6000 and a bandwidth of 80 nm. The gratings ensure centering of each part of the spectrum they produce so as to provide uniform coverage of the broadest possible wavelength interval. In this study we manage to simultaneously cover the 430–680 nm interval without gaps using three gratings. Efficiency of the spectrograph optical system itself from the entrance slit to the CCD detector is typically of about 60% with a maximum of 75%. We discuss the advantages and drawbacks of the new spectrograph scheme as well as the astrophysical tasks for which the instrument can be used

    Advanced modeling of a moderate-resolution holographic spectrograph

    Get PDF
    © 2017 Optical Society of America.In the present article we consider an accurate modeling of a spectrograph with a cascade of volume-phase holographic gratings. The proposed optical scheme allows us to detect spectra in an extended wavelength range without gaps, providing relatively high spectral resolution and high throughput. However, modeling and minimization of possible cross-talk between gratings and stray light in such a scheme represents a separate task. We use analytical equations of the coupled-wave theory together with rigorous coupled-wave analysis to optimize the gratings parameters and further apply the latter together with a non-sequential ray-tracing algorithm to model propagation of beams through the spectrograph. The results show relatively high throughput up to 53% and the absence of any significant cross-talk or ghost images, even for ordinary holograms recorded on dichromated gelatin

    Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge

    Full text link
    The exact solution for the electromagnetic field occuring when the Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic field aligned along the axis of axial symmetry (ii) in dipolar magnetic field generated by current loop has been investigated. Effective potential of motion of charged test particle around Kerr-Taub-NUT gravitational source immersed in magnetic field with different values of external magnetic field and NUT parameter has been also investigated. In both cases presence of NUT parameter and magnetic field shifts stable circular orbits in the direction of the central gravitating object. Finally we find analytical solutions of Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field.Comment: 18 pages, 6 figures, new results in section 2 added, section 3 is revised, 3 references are adde
    • …
    corecore