4 research outputs found

    Using historical archives and landsat imagery to explore changes in the mangrove cover of peninsular malaysia between 1853 and 2018

    No full text
    Archive records such as maps, journals, books, sketches, cadastre and notarial documents have been underutilised in describing past and present changes in ecological systems, such as mangrove forests. Historical records can be invaluable information sources for baseline establishment, to undertake long-term study on mangrove dynamics and enhance the historical land cover and land-use dynamics of a country. In this study, we explore these untapped information reservoirs, used complementarily with remote sensing techniques, to explain the dynamics of the mangrove systems in Peninsular Malaysia. The archives in the United Kingdom, the Netherlands, Malaysia and Singapore were explored and mined for related information on the mangrove systems in Peninsular Malaysia from past centuries. Most historical records found in this study were used to validate the mangrove presence in Peninsular Malaysia since 1853 while two records from 1944 and 1954 were used to quantify the mangrove cover extent. A significant finding of this study was the oldest record found in 1853 that attested to the presence of a mangrove system on the mainland Penang of Peninsular Malaysia which was not identified again as such in records post-1853. Remote sensing data, specifically Landsat images, were used to determine the mangrove extent in Peninsular Malaysia for the years 1988, 1992, 2002, 2012 and 2018. By complementing the historical records with remote sensing information, we were able to validate the mangrove presence in Peninsular Malaysia since 1853 and determine the gain/loss of mangrove systems over the last 74 years. Peninsular Malaysia has lost over 400 km2 of mangrove forests, equivalent to 31% of its original extent between 1944 and 2018. This is a significant loss for Peninsular Malaysia which has less than 1% mangrove cover of its total land area presently.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Status of the undisturbed mangroves at Brunei Bay, East Malaysia: A preliminary assessment based on remote sensing and ground-truth observations

    No full text
    Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite-ALOS) and ground-truth (Point-Centred Quarter Method-PCQM) observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%), followed by Sundar (27%) and Limbang (15%). The medium resolution ALOS data were efficient for mapping dominant mangrove species such as Nypa fruticans, Rhizophora apiculata, Sonneratia caseolaris, S. alba and Xylocarpus granatum in the vicinity (accuracy: 80%). The PCQM estimates found a higher basal area at Limbang and Menumbok-suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index) was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution of Sonneratia spp. as pioneer vegetation at shallow river mouths, N. fruticans in the areas of strong freshwater discharge, R. apiculata in the areas of strong neritic incursion and X. granatum at interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore