6 research outputs found

    Determination of heavy metal concentration in feed and permeate streams of polymer enhanced ultrafiltration process

    No full text
    Polymer enhanced ultrafiltration (PEUF) is a newly developed method for the removal of heavy metals from aqueous solutions. This method was applied for the removal of mercury and cadmium with the presence of polyethyleneimine (PEI) as a water soluble polymer. After ultrafiltration experiments for metal-polymer mixtures, two separate streams, namely, retentate and permeate, former of which contains mainly metal-polymer complex and free polymer molecules while latter of which mainly contains free metal ions, were obtained. At the end of PEUF experiments, performance of operation was determined by concentration analyses which was achieved by atomic absorption spectroscopy (AAS) applied in a different way for permeate and retentate streams considering the effect of presence of polymer. For mercury analysis, cold vapor AAS was applied. It was observed that the presence of PEI did not affect the atomic absorption signal when 10% HCl was added to the sample solutions. For calcium and cadmium, flame AAS was used. It was observed that change in PEI concentration results in change in measured concentration of calcium and cadmium. Therefore, two new approaches were developed for accurate measurement of concentrations of calcium and cadmium. It was also observed that presence of other metals did not affect the accuracy of the measurement of a particular metal in the concentration range studied

    Effect of operating parameters on selective separation of heavy metals from binary mixtures via polymer enhanced ultrafiltration

    No full text
    Performance of continuous polymer enhanced ultrafiltration (PEUF) method was investigated for removal of mercury and cadmium from binary mixtures. This method includes the addition of polyethyleneimine (PEI) as a water soluble polymer to bind the metals, which was followed by ultrafiltration operation performed on both laboratory and pilot scale systems. The influence of various operating parameters such as temperature, metal/polymer ratio, presence of calcium ions and pH on retention of metals and permeate flux was investigated. To investigate the possibility of selective separation of mercury and cadmium, experiments were conducted for binary solutions at different pH and loading ratios. It was seen that the retention of mercury decreased and permeate flux increased when the temperature increased. The increased pH and decreased metal/ polymer ratio, loading (L), resulted in higher retention of both metals. Shapes of retention vs. pH or L curves were very similar for both metals. Retentions stay almost constant at a value very close to unity until a critical L or pH value was reached, then, R decreases almost linearly with L or pH. However, retention of cadmium was affected more than that of mercury as the pH decreased and L increased. This leads to the selective separation of mercury and cadmium. At low pH values (about 5) and at high L values (about 0.3), mercury was removed by ultrafiltration operation while almost all cadmium passed through the membrane. At pH 5.5 and cadmium/polymer ratio about 0.35 and mercury/polymer ratio about 0.39, the highest separation factor was obtained as 49. (C) 1998 Elsevier Science B.V
    corecore