2 research outputs found

    Analysis of the use of waste heat from a glass melting furnace for electricity production in the organic Rankine cycle system

    No full text
    In most production plants, waste heat is usually discharged into the environment, contributing to a reduction in the energy efficiency of industrial processes. This is often due to the low thermal parameters of the carriers in which this energy is contained, such as oils, water, exhaust gases or other post-process gases, which means that their use for electricity production in a conventional Rankine cycle may prove to be economically unprofitable. One of the technologies enabling the use of lowand medium-temperature waste heat carriers is the organic Rankine cycle (ORC) technology. The paper present results of calculations performed to evaluate potential electricity production in ORC using waste heat from a natural gas-fired glass melting furnace. The analysis was carried out assuming the use of a single-stage axial turbine, whose efficiency was estimated using correlations available in the literature. The calculations were carried out for three working fluids, namely hexamethyldisiloxane, dimethyl carbonate, and toluene for two scenarios, i.e. ORC system dedicated only to electricity production and ORC system working in cogeneration mode, where heat is obtain from cooling the condenser. In each of the considered cases, the ORC system achieves the net power output exceeding 300 kW (309 kW for megawatts in the cogenerative mode to 367 kW for toluene in the non-cogenerative mode), with an estimated turbine efficiency above 80%, in range of 80,75 to 83,78%. The efficiency of the ORC system, depending on the used working fluid and the adopted scenario, is in the range from 14.85 to 16.68%, achieving higher efficiency for the non-cogenerative work scenario

    Bioresorbable Nonwoven Patches as Taxane Delivery Systems for Prostate Cancer Treatment

    No full text
    Prostate cancer is the second most common cancer in males. In the case of locally advanced prostate cancer radical prostatectomy is one of the first-line therapy. However, recurrence after resection of the tumor can appear. Drug-eluting bioresorbable implants acting locally in the area of the tumor or the resection margins, that reduce the risk of recurrence would be advantageous. Electrospinning offers many benefits in terms of local delivery so fiber-forming polyesters and polyestercarbonates which are suitable to be drug-loaded were used in the study to obtain CTX or DTX-loaded electrospun patches for local delivery. After a fast verification step, patches based on the blend of poly(glycolide-ε-caprolactone) and poly(lactide-glycolide) as well as patches obtained with poly(lactide-glycolide- ε-caprolactone) were chosen for long-term study. After three months, 60% of the drug was released from (PGCL/PLGA) + CTX and it was selected for final, anticancer activity analysis with the use of PC-3 and DU145 cells to establish its therapeutic potential. CTX-loaded patches reduced cell growth to 53% and 31% respectively, as compared to drug-free patches. Extracts from drug-free patches showed excellent biocompatibility with the PC-3 cell line. Cabazitaxel-loaded bioresorbable patches are a promising drug delivery system for prostate cancer therapy
    corecore