16 research outputs found

    Linking thermal variability and change to urban growth in Harare Metropolitan City using remotely sensed data.

    Get PDF
    Doctor of Philosophy in Environmental Science. University of KwaZulu-Natal. Pietermaritzburg, 2017.Urban growth, which involves Land Use and Land Cover Changes (LULCC), alters land surface thermal properties. Within the framework of rapid urban growth and global warming, land surface temperature (LST) and its elevation have potential significant socio-economic and environmental implications. Hence the main objectives of this study were to (i) map urban growth, (ii) link urban growth with indoor and outdoor thermal conditions and (iii) estimate implications of thermal trends on household energy consumption as well as predict future urban growth and temperature patterns in Harare Metropolitan, Zimbabwe. To achieve these objectives, broadband multi-spectral Landsat 5, 7 and 8, in-situ LULC observations, air temperature (Ta) and humidity data were integrated. LULC maps were obtained from multi-spectral remote sensing data and derived indices using the Support Vector Machine Algorithm, while LST were derived by applying single channel and split window algorithms. To improve remote sensing based urban growth mapping, a method of combining multi-spectral reflective data with thermal data and vegetation indices was tested. Vegetation indices were also combined with socio-demographic data to map the spatial distribution of heat vulnerability in Harare. Changes in outdoor human thermal discomfort in response to seasonal LULCC were evaluated, using the Discomfort Index (DI) derived parsimoniously from LST retrieved from Landsat 8 data. Responses of LST to long term urban growth were analysed for the period from 1984 to 2015. The implications of urban growth induced temperature changes on household air-conditioning energy demand were analysed using Landsat derived land surface temperature based Degree Days. Finally, the Cellular Automata Markov Chain (CAMC) analysis was used to predict future landscape transformation at 10-year time steps from 2015 to 2045. Results showed high overall accuracy of 89.33% and kappa index above 0.86 obtained, using Landsat 8 bands and indices. Similar results were observed when indices were used as stand-alone dataset (above 80%). Landsat 8 derived bio-physical surface properties and socio-demographic factors, showed that heat vulnerability was high in over 40% in densely built-up areas with low-income when compared to “leafy” suburbs. A strong spatial correlation (α = 0.61) between heat vulnerability and surface temperatures in the hot season was obtained, implying that LST is a good indicator of heat vulnerability in the area. LST based discomfort assessment approach retrieved DI with high accuracy as indicated by mean percentage error of less than 20% for each sub-season. Outdoor thermal discomfort was high in hot dry season (mean DI of 31oC), while the post rainy season was the most comfortable (mean DI of 19.9oC). During the hot season, thermal discomfort was very low in low density residential areas, which are characterised by forests and well maintained parks (DI ≤27oC). Long term changes results showed that high density residential areas increased by 92% between 1984 and 2016 at the expense of cooler green-spaces, which decreased by 75.5%, translating to a 1.98oC mean surface temperature increase. Due to surface alterations from urban growth between 1984 and 2015, LST increased by an average of 2.26oC and 4.10oC in the cool and hot season, respectively. This decreased potential indoor heating energy needed in the cool season by 1 degree day and increased indoor cooling energy during the hot season by 3 degree days. Spatial analysis showed that during the hot season, actual energy consumption was low in high temperature zones. This coincided with areas occupied by low income strata indicating that they do not afford as much energy and air conditioning facilities as expected. Besides quantifying and strongly relating with energy requirement, degree days provided a quantitative measure of heat vulnerability in Harare. Testing vegetation indices for predictive power showed that the Urban Index (UI) was comparatively the best predictor of future urban surface temperature (r = 0.98). The mean absolute percentage error of the UI derived temperature was 5.27% when tested against temperature derived from thermal band in October 2015. Using UI as predictor variable in CAMC analysis, we predicted that the low surface temperature class (18-28oC) will decrease in coverage, while the high temperature category (36-45oC) will increase in proportion covered from 42.5 to 58% of city, indicating further warming as the city continues to grow between 2015 and 2040. Overall, the findings of this study showed that LST, human thermal comfort and air-conditioning energy demand are strongly affected by seasonal and urban growth induced land cover changes. It can be observed that urban greenery and wetlands play a significant role of reducing LST and heat transfer between the surface and lower atmosphere and LST may continue unless effective mitigation strategies, such as effective vegetation cover spatial configuration are adopted. Limitations to the study included inadequate spatial and low temporal resolution of Landsat data, few in-situ observations of temperature and LULC classification which was area specific thus difficult for global comparison. Recommendations for future studies included data merging to improve spatial and temporal representation of remote sensing data, resource mobilization to increase urban weather station density and image classification into local climate zones which are of easy global interpretation and comparison

    Pansharpened landsat 8 thermal-infrared data for improved land surface temperature characterization in a heterogeneous urban landscape

    Get PDF
    Challenges associated with adolescents are prevalent in South African societies. During the adolescence stage, children may become involved in deviant behaviour. Although a significant number of studies have focused on the factors that contribute to adolescents’ deviant behaviour, including parental factors, there is paucity of research specifically in rural communities. This study explores the contribution of parental factors to adolescents’ deviant behaviour in rural communities in South Africa. Guided by the qualitative approach, the present study makes use of semi-structured interviews to collect data and thematic analysis to analyse data

    Impacts of the spatial configuration of built-up areas and urban vegetation on land surface temperature using spectral and local spatial autocorrelation indices

    Get PDF
    Understanding how the spatial configuration of land cover patterns of built-up areas and urban vegetation affect urban surface temperatures is crucial for improving the sustainability of cities as well as optimizing urban design and landscape planning. Because of their capability to detect distinct surface thermal features, satellite data have proved useful in exploring the impacts of spatial configuration of land cover on land surface temperature (LST). In this study, we examine how the spatial configuration of built-up and urban vegetation affects the LST in the Harare metropolitan city, Zimbabwe. In order to achieve this objective, we combined the LST, local spatial statistics of Getis-Ord Gi* and local Moran’s I statistic, Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Built-Up Index (NDBI) derived from multi-date Landsat satellite data (1994, 2001 and 2017

    Controls of Land Surface Temperature between and within Local Climate Zones: A Case Study of Harare in Zimbabwe

    No full text
    Urban growth-related changes in land use and land cover have segmented urban areas into zones of distinct surface and air temperatures (i.e., Local Climate Zones—LCZ). While studies have revealed inter-LCZ temperature variations, understanding controls of variations in Land Surface Temperature (LST) within LCZs has largely remained uninvestigated. In view of the need for LCZ-specific heat mitigation strategies, this study investigated factors driving LST variations within LCZs. To achieve this, an LCZ map for Harare was developed and correlated with LST, both derived using Landsat 8 data. The contribution index (CI) was then used to determine the relative contribution of LCZs to cooling and warming of the city. The contribution of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Built-up Index (NDBI), Modified Normalized Difference Water Index (MNDWI), Urban Index (UI), and Aspect and Elevation as quantitative measures of surface controls of LST were investigated between and within LCZs. LST generally increased with built-up density and reduced with increases in surface water and vegetation. The study showed that the cooling effect of water bodies was reduced in contribution to their insignificant proportion of the study area. At the city scale, NDVI, MNDWI, NDBI, and UI had the strongest influence on LST (correlation coefficient > 0.5). At the intra-LCZ scale, the contribution of these surface properties remained significant, though to varied extents. The study concluded that surface wetness is a significant cooling determinant in densely built-up LCZs, while in other LCZs, it combines with vegetation abundance and health to mitigate elevated surface temperature. Aspect and elevation had low but significant correlations with LST in most LCZs. The study recommends that intra-LCZ controls of LST must be considered in heat mitigation efforts

    Controls of Land Surface Temperature between and within Local Climate Zones: A Case Study of Harare in Zimbabwe

    No full text
    Urban growth-related changes in land use and land cover have segmented urban areas into zones of distinct surface and air temperatures (i.e., Local Climate Zones—LCZ). While studies have revealed inter-LCZ temperature variations, understanding controls of variations in Land Surface Temperature (LST) within LCZs has largely remained uninvestigated. In view of the need for LCZ-specific heat mitigation strategies, this study investigated factors driving LST variations within LCZs. To achieve this, an LCZ map for Harare was developed and correlated with LST, both derived using Landsat 8 data. The contribution index (CI) was then used to determine the relative contribution of LCZs to cooling and warming of the city. The contribution of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Built-up Index (NDBI), Modified Normalized Difference Water Index (MNDWI), Urban Index (UI), and Aspect and Elevation as quantitative measures of surface controls of LST were investigated between and within LCZs. LST generally increased with built-up density and reduced with increases in surface water and vegetation. The study showed that the cooling effect of water bodies was reduced in contribution to their insignificant proportion of the study area. At the city scale, NDVI, MNDWI, NDBI, and UI had the strongest influence on LST (correlation coefficient > 0.5). At the intra-LCZ scale, the contribution of these surface properties remained significant, though to varied extents. The study concluded that surface wetness is a significant cooling determinant in densely built-up LCZs, while in other LCZs, it combines with vegetation abundance and health to mitigate elevated surface temperature. Aspect and elevation had low but significant correlations with LST in most LCZs. The study recommends that intra-LCZ controls of LST must be considered in heat mitigation efforts

    Examining the prospects of sentinel-2 multispectral data in detecting and mapping maize streak virus severity in smallholder Ofcolaco farms, South Africa

    No full text
    Crop diseases monitoring is critical in understanding the effects of diseases on crop production and associated implications on food security. The aim of this study was to assess the utility of the 10 m resolution Sentinel 2 data set, in detecting and mapping Maize Streak Virus (MSV) disease in Ofcolaco farms in Tzaneen, South Africa. Specifically, the study sought to spectrally discriminate and map maize infected with MSV from other land-cover classes. To achieve this objective two analysis approaches were used: spectral analysis (Test I: spectral bands; Test II: spectral bands + spectral vegetation indices) using random forest algorithm in a supervised classification approach. The indices combined with spectral bands were EVI, SAVI, NDVI, GNDVI, GLI and MSAVI. Results indicated that infected maize was highly separable from health maize and other land cover classes (TDSI > 1.8). The mapping accuracy was high using spectral data (Overall accuracy = 85.29% and Kappa = 0.79) and even higher when spectral bands were combined with derived vegetation indices (Overall accuracy = 89.43% and Kappa = 0.84). The results of the study show that the 10 m resolution multispectral Sentinel 2 data set can be used to detect and map maize infected by MSV. The findings are important in showing the value of combining 10 m spectral data with derived indices from Sentinel 2 in improving monitoring of maize steak virus in resource-constrained nations

    Determining the Influence of Long Term Urban Growth on Surface Urban Heat Islands Using Local Climate Zones and Intensity Analysis Techniques

    No full text
    Urban growth, typified by conversion from natural to built-up impervious surfaces, is known to cause warming and associated adverse impacts. Local climate zones present a standardized technique for evaluating the implications of urban land use and surface changes on temperatures of the overlying atmosphere. In this study, long term changes in local climate zones of the Bulawayo metropolitan city were used to assess the influence of the city’s growth on its thermal characteristics. The zones were mapped using the World Urban Database and Access Portal Tool (WUDAPT) procedure while Landsat data were used to determine temporal changes. Data were divided into 1990 to 2005 and 2005 to 2020 temporal splits and intensity analysis used to characterize transformation patterns at each interval. Results indicated that growth of the built local climate zones (LCZ) in Bulawayo was faster in the 1990 to 2005 interval than the 2005 to 2020. Transition level intensity analysis showed that growth of built local climate zones was more prevalent in areas with water, low plants and dense forest LCZ in both intervals. There was a westward growth of light weight low rise built LCZ category than eastern direction, which could be attributed to high land value in the latter. Low plants land cover type experienced a large expansion of light weight low rise buildings than the compact low rise, water, and open low-rise areas. The reduction of dense forest was mainly linked to active expansion of low plants in the 2005 to 2020 interval, symbolizing increased deforestation and vegetation clearance. In Bulawayo’s growth, areas where built-up LCZs invade vegetation and wetlands have increased anthropogenic warming (i.e., Surface Urban Heat Island intensities) in the city. This study demonstrates the value of LCZs in among others creating a global urban land use land cover database and assessing the influence of urban growth pattern on urban thermal characteristics

    Determining the Influence of Long Term Urban Growth on Surface Urban Heat Islands Using Local Climate Zones and Intensity Analysis Techniques

    No full text
    Urban growth, typified by conversion from natural to built-up impervious surfaces, is known to cause warming and associated adverse impacts. Local climate zones present a standardized technique for evaluating the implications of urban land use and surface changes on temperatures of the overlying atmosphere. In this study, long term changes in local climate zones of the Bulawayo metropolitan city were used to assess the influence of the city’s growth on its thermal characteristics. The zones were mapped using the World Urban Database and Access Portal Tool (WUDAPT) procedure while Landsat data were used to determine temporal changes. Data were divided into 1990 to 2005 and 2005 to 2020 temporal splits and intensity analysis used to characterize transformation patterns at each interval. Results indicated that growth of the built local climate zones (LCZ) in Bulawayo was faster in the 1990 to 2005 interval than the 2005 to 2020. Transition level intensity analysis showed that growth of built local climate zones was more prevalent in areas with water, low plants and dense forest LCZ in both intervals. There was a westward growth of light weight low rise built LCZ category than eastern direction, which could be attributed to high land value in the latter. Low plants land cover type experienced a large expansion of light weight low rise buildings than the compact low rise, water, and open low-rise areas. The reduction of dense forest was mainly linked to active expansion of low plants in the 2005 to 2020 interval, symbolizing increased deforestation and vegetation clearance. In Bulawayo’s growth, areas where built-up LCZs invade vegetation and wetlands have increased anthropogenic warming (i.e., Surface Urban Heat Island intensities) in the city. This study demonstrates the value of LCZs in among others creating a global urban land use land cover database and assessing the influence of urban growth pattern on urban thermal characteristics

    Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes

    No full text
    Reliable and up-to-date urban land cover information is valuable in urban planning and policy development. Due to the increasing demand for reliable land cover information there has been a growing need for robust methods and datasets to improve the classification accuracy from remotely sensed imagery. This study sought to assess the potential of the newly launched Landsat 8 sensor’s thermal bands and derived vegetation indices in improving land cover classification in a complex urban landscape using the support vector machine classifier. This study compared the individual and combined performance of Landsat 8’s reflective, thermal bands and vegetation indices in classifying urban land use-land cover. The integration of Landsat 8 reflective bands, derived vegetation indices and thermal bands overall produced significantly higher accuracy classification results than using traditional bands as standalone (i.e. overall, user and producer accuracies). An overall accuracy above 89.33% and a kappa index of 0.86, significantly higher than the one obtained with the use of the traditional reflective bands as a standalone data-set and other analysis stages. On average, the results also indicate high producer and user accuracies (i.e. above 80%) for most of the classes with a McNemar’s Z score of 9.00 at 95% confidence interval showing significant improvement compared with classification using reflective bands as standalone. Overall, the results of this study indicate that the integration of the Landsat 8’s OLI and TIR data presents an invaluable potential for accurate and robust land cover classification in a complex urban landscape, especially in areas where the availability of high resolution datasets remains a challenge

    Comparative Analysis of Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone

    No full text
    Urban growth and its associated expansion of built-up areas are expected to continue through to the twenty second century and at a faster pace in developing countries. This has the potential to increase thermal discomfort and heat-related distress. There is thus a need to monitor growth patterns, especially in resource constrained countries such as Africa, where few studies have so far been conducted. In view of this, this study compares urban growth and temperature response patterns in Freetown and Bo town in Sierra Leone. Multispectral Landsat images obtained in 1998, 2000, 2007, and 2015 are used to quantify growth and land surface temperature responses. The contribution index (CI) is used to explain how changes per land use and land cover class (LULC) contributed to average city surface temperatures. The population size of Freetown was about eight times greater than in Bo town. Landsat data mapped urban growth patterns with a high accuracy (Overall Accuracy > 80%) for both cities. Significant changes in LULC were noted in Freetown, characterized by a 114 km2 decrease in agriculture area, 23 km2 increase in dense vegetation, and 77 km2 increase in built-up area. Between 1998 and 2015, built-up area increased by 16 km2, while dense vegetation area decreased by 14 km2 in Bo town. Average surface temperature increased from 23.7 to 25.5 °C in Freetown and from 24.9 to 28.2 °C in Bo town during the same period. Despite the larger population size and greater built-up extent, as well as expansion rate, Freetown was 2 °C cooler than Bo town in all periods. The low temperatures are attributed to proximity to sea and the very large proportion of vegetation surrounding the city. Even close to the sea and abundant vegetation, the built-up area had an elevated temperature compared to the surroundings. The findings are important for formulating heat mitigation strategies for both inland and coastal cities in developing countries
    corecore