3 research outputs found

    The Zakharov-Shabat spectral problem on the semi-line: Hilbert formulation and applications

    Full text link
    The inverse spectral transform for the Zakharov-Shabat equation on the semi-line is reconsidered as a Hilbert problem. The boundary data induce an essential singularity at large k to one of the basic solutions. Then solving the inverse problem means solving a Hilbert problem with particular prescribed behavior. It is demonstrated that the direct and inverse problems are solved in a consistent way as soon as the spectral transform vanishes with 1/k at infinity in the whole upper half plane (where it may possess single poles) and is continuous and bounded on the real k-axis. The method is applied to stimulated Raman scattering and sine-Gordon (light cone) for which it is demonstrated that time evolution conserves the properties of the spectral transform.Comment: LaTex file, 1 figure, submitted to J. Phys.
    corecore