3 research outputs found
The Zakharov-Shabat spectral problem on the semi-line: Hilbert formulation and applications
The inverse spectral transform for the Zakharov-Shabat equation on the
semi-line is reconsidered as a Hilbert problem. The boundary data induce an
essential singularity at large k to one of the basic solutions. Then solving
the inverse problem means solving a Hilbert problem with particular prescribed
behavior. It is demonstrated that the direct and inverse problems are solved in
a consistent way as soon as the spectral transform vanishes with 1/k at
infinity in the whole upper half plane (where it may possess single poles) and
is continuous and bounded on the real k-axis. The method is applied to
stimulated Raman scattering and sine-Gordon (light cone) for which it is
demonstrated that time evolution conserves the properties of the spectral
transform.Comment: LaTex file, 1 figure, submitted to J. Phys.