45 research outputs found

    Proposed specifications for a lumbar spinal cord electrode array for control of lower extremities in paraplegia

    Get PDF
    Journal ArticleThe goal of the study was to provide specifications for a stimulating electrode array to be implanted in the lumbosacral spinal cord as part of a functional neuromuscular stimulation (FNS) system for control of lower extremity muscles in paralyzed individuals. Dual channel stimulation of the quadriceps activation pool in the feline ventral lumbo-sacral spinal cord was performed to measure electrode interactions and to explore the effect of various stimulation paradigms on muscle fatigue. There was no measurable overlap in the populations of motor neurons activated from two different electrodes for spacings _x0015_ 1 mm with currents below 100 _x0016_A. However, a statistically significant increase in the population of activated fibers due to current summation was observed when stimuli _x0015_ 70 _x0016_A were simultaneously presented through pairs of electrodes within 3 mm of each other. Fatigue effects were studied with three paradigms: 1) stimuli were delivered through a single electrode, 2) stimuli were delivered through two electrodes with the stimulus to the second electrode presented during the refractory period of fibers stimulated by the first electrode, and 3) stimuli were interleaved between the two electrodes such that the stimulus to one electrode was presented midway between stimuli to the other electrode, and the rate of stimulation through a single electrode was half that used in the first two paradigms. Dual channel refractory and single channel stimulation did not differ from each other in the rate at which the muscle fatigued, in both cases the force decayed to 30% of its initial level within 2 min of the initiation of the stimulation regime, whereas the force with interleaved stimulation was still above the initial force at this time due to strong potentiation. Based on these results and on and activation pool dimensions obtained in an earlier study, preliminary specifications are presented for an electrode array to be implanted in the human spinal cord for functional neuromuscular stimulation

    Muscle recruitment through electrical stimulation of the lumbo-sacral spinal cord

    Get PDF
    Journal ArticleThe goal of this study was to determine the feasibility of producing graded muscle contraction in individual muscles or muscle groups by electrically stimulating motor neurons in the lumbo-sacral spinal cord. Recruitment curves were obtained for quadriceps, tibialis anterior and triceps surae/plantaris by stimulating their activation pools in the ventral horn of the feline spinal cord. Mean twitch times-to-peak for quadriceps, tibialis anterior and triceps surae/plantaris were 33.0, 41.0, and 36.0 ms, respectively. Twitch duration as a function of stimulus strength demonstrated a mixed motor unit recruitment order, distinctively different from the inverse recruitment order exhibited by conventional methods of electrical stimulation of peripheral nerve. The recruitment curve slopes (expressed as a percentage of maximum force per nanocurrent of delivered charge) were shallow: 7.9 for quadriceps, 2.6 for tibialis anterior and 8.5 for triceps surae/plantaris. These results show that graded control of force in individual muscles or muscle groups can be obtained through spinal cord stimulation, and suggest that spinal cord stimulation could be used for functional neuromuscular stimulation applications

    Selective activation of muscle groups in the feline hindlimb thorough electrical microstimulation of the ventral lumbo-sacral spinal cord

    Get PDF
    Journal ArticleSelective activation of muscle groups in the feline hindlimb by electrical stimulation of the ventral lumbo-sacral spinal cord was investigated. Spinal cord segments L5 to S1 were mapped using a penetrating tungsten needle electrode. Locations that produced isolated contraction of quadriceps, tibialis anterior or triceps surae/plantaris muscles when stimulated with a current of 40 A or less, and in which spread of activity to other muscles was not detected after increasing the stimulus to at least twice the threshold level, were defined as belonging to the target muscle's Å“activation pool. The quadriceps activation pool was found to extend from the beginning of L5 to the middle of L6. The tibialis anterior activation pool extended from the beginning of L6 to the middle of L7, and the triceps surae/plantaris activation pool extended from the caudal end of L6 to the beginning of S1. The three activation pools were located in Rexed motor lamina IX and their spatial organization was found to correspond well with that of the anatomically defined motor pools innervating the same muscles. The spatial and functional segregation of motor pools manifested at the spinal cord level can have direct applications in the areas of functional electrical stimulation and motor control
    corecore