671 research outputs found

    Considerations on radar localization in multi-target environments

    Get PDF
    In a multitude of applications like e.g. in automotive radar systems a localization of multiple passive targets in the observed area is necessary. This contribution presents a robust approach based on trilateration to detect point scatterers in a two-dimensional plane using the reflection and transmission information of only two antennas. The proposed algorithm can identify and remove ambiguities in target detection which unavoidably occur in certain target constellations in such a two-antenna configuration

    Transverse-momentum-dependent parton distributions at the edge of the lightcone

    Full text link
    We present a completely gauge-invariant operator definition of transverse-momentum-dependent parton densities (TMD), supplied with longitudinal lightlike gauge links as well as transverse gauge links at lightcone infinity. Within this framework, we consider the consistent treatment of specific divergences, emerging in the "unsubtracted" TMD beyond the tree approximation, and construct the soft factors to cancel unphysical singularities. We confront this approach with factorization schemes, which make use of covariant gauges with off-the-lightcone gauge links, and discuss their mutual connection.Comment: 10 pages, 2 figures; needs ws-ijmpcs.cls (supplied). Invited talk presented at Workshop "QCD evolution of parton distributions: from collinear to non-collinear case", 8 - 9 Apr 2011, Thomas Jefferson National Accelerator Facility, Newport News (VA), US

    Compact mode-matched excitation structures for radar distance measurements in overmoded circular waveguides

    Get PDF
    This contribution deals with guided radar level measurements of liquid materials in large metal tubes, socalled stilling wells, bypass or still pipes. In the RF domain these tubes function as overmoded circular waveguides and mode-matched excitation structures like waveguide tapers are needed to avoid higher order waveguide modes. Especially for high-precision radar measurements the multimode propagation effects need to be minimized to achieve submillimeter accuracy. Therefore, a still pipe simulator is introduced with the purpose to fundamentally analyze the modal effects. Furthermore, a generalized design criterion is derived for the spurious mode suppression of compact circular waveguide transitions under the constraint of specified accuracy levels. According to the obtained results, a promising waveguide taper concept will finally be presented. © Author(s) 2008

    Nucleon Generalized Parton Distributions from Full Lattice QCD

    Full text link
    We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.Comment: 40 pages, 49 figures; Revised chiral extrapolations in sections A-K, main conclusions unchange

    Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions

    Get PDF
    We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.Comment: 68 pages, 47 figures. Main revision points: improved discussion of chiral fits and systematic uncertainties, several minor refinements. Accepted for publication in Phys.Rev.

    Modelling of the Mechanical Behaviour of Ultra-Fine Grained Titanium Alloys at High Strain Rates

    Get PDF
    Results of numerical simulations of the mechanical behaviour of coarse grained and UFG titanium alloys under quasi-static uniaxial compression and plane shock wave loading are presented in this paper. Constitutive equations predict the strain hardening behaviour, the strain rate sensitivity of the flow stress and the temperature softening of titanium alloys with a range of grain sizes from 20 µm to 100 nm. Characteristics of the mechanical behaviour of UFG a and a+ß titanium alloys in wide range of strain rates are discussed

    The Mechanical Behaviour of Ultra Fine Grained Titanium Alloys at High Strain Rates

    Get PDF
    Within this study the mechanical behaviour of ultra-fine grained Ti-6-22-22S titanium alloy was investigated and compared to coarse grained material. By severe plastic deformation using the cyclic channel die compression process, grain sizes between 300 and 500 nm were obtained. The mechanical behaviour was studied over a wide range of strain rates from 10^(-3) - 107 s^(-1) under compressive loading using different experimental techniques. A significant increase of flow stress with decreasing grain size compared to the coarse grain state was found. An evaluation of the strain hardening behaviour of the UFG material shows a significant increase of the strain hardening coefficient at high strain rates for low plastic deformation. The strain rate sensitivity of the material is found to be constant within a range of strain rates from 10^(-3) to 106 s^(-1) but increases at higher plastic strains. However, compressive deformability is nearly constant up to 102 s-1 and decreased disproportionately at higher rates of strain. With decreasing grain size a significant decrease of compressive deformability was found. The strength at failure is increased with increasing strain rate

    Lung and chest wall mechanics in normal anaesthetized subjects and in patients with COPD at different PEEP levels

    Get PDF
    In order to assess the relative contribution of the lung and the chest wall to the derangements of respiratory mechanics in chronic obstructive pulmonary disease (COPD) patients with acute ventilatory failure (AVF), we studied eight COPD patients undergoing controlled mechanical ventilation for AVF and nine normal subjects anaesthetized for surgery as a control group. With the use of the interrupter technique together with the oesophageal balloon technique we measured: static lung and chest wall elastances (E[st,L] and E[st,w], respectively), maximum (R[L,max]), minimum (R[L,min]) and additional (deltaR[L]) lung resistances, additional chest wall resistance (deltaRw) and, in the COPD group, total intrinsic positive end-expiratory pressure (PEEPtot). Measurements were repeated at 0, 5, 10 and 15 cmH2O of applied positive end-expiratory pressure (PEEP). We found that, in the COPD group: 1) both E(st,w) and deltaRw were higher than in the normal group; 2) R(L,max) was markedly increased due to an increase of both R(L,min) and deltaRL; 3) even low levels of PEEP increased PEEPtot; 4) PEEP did not reduce elastance or total resistance of either the lung or the chest wall. We conclude that chest wall mechanics are abnormal in chronic obstructive pulmonary disease patients with acute ventilatory failure undergoing controlled mechanical ventilation and that positive end-expiratory pressure does not seem to be effective in reducing either elastance or resistance of the lung or chest wall
    • …
    corecore