985 research outputs found
Intrinsic quark transverse momentum in the nucleon from lattice QCD
A better understanding of transverse momentum (k_T-) dependent quark
distributions in a hadron is needed to interpret several experimentally
observed large angular asymmetries and to clarify the fundamental role of gauge
links in non-abelian gauge theories. Based on manifestly non-local gauge
invariant quark operators we introduce process-independent k_T-distributions
and study their properties in lattice QCD. We find that the longitudinal and
transverse momentum dependence approximately factorizes, in contrast to the
behavior of generalized parton distributions. The resulting quark
k_T-probability densities for the nucleon show characteristic dipole
deformations due to correlations between intrinsic k_T and the quark or nucleon
spin. Our lattice calculations are based on N_f=2+1 mixed action propagators of
the LHP collaboration.Comment: 4 pages, 3 figure
Lattice QCD study of the Boer-Mulders effect in a pion
The three-dimensional momenta of quarks inside a hadron are encoded in
transverse momentum-dependent parton distribution functions (TMDs). This work
presents an exploratory lattice QCD study of a TMD observable in the pion
describing the Boer-Mulders effect, which is related to polarized quark
transverse momentum in an unpolarized hadron. Particular emphasis is placed on
the behavior as a function of a Collins-Soper evolution parameter quantifying
the relative rapidity of the struck quark and the initial hadron, e.g., in a
semi-inclusive deep inelastic scattering (SIDIS) process. The lattice
calculation, performed at the pion mass m_pi = 518 MeV, utilizes a definition
of TMDs via hadronic matrix elements of a quark bilocal operator with a
staple-shaped gauge connection; in this context, the evolution parameter is
related to the staple direction. By parametrizing the aforementioned matrix
elements in terms of invariant amplitudes, the problem can be cast in a Lorentz
frame suited for the lattice calculation. In contrast to an earlier nucleon
study, due to the lower mass of the pion, the calculated data enable
quantitative statements about the physically interesting limit of large
relative rapidity. In passing, the similarity between the Boer-Mulders effects
extracted in the pion and the nucleon is noted.Comment: 16 pages, 9 figures, 3 table
Sivers and Boer-Mulders observables from lattice QCD
We present a first calculation of transverse momentum dependent nucleon
observables in dynamical lattice QCD employing non-local operators with
staple-shaped, "process-dependent" Wilson lines. The use of staple-shaped
Wilson lines allows us to link lattice simulations to TMD effects determined
from experiment, and in particular to access non-universal, naively
time-reversal odd TMD observables. We present and discuss results for the
generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS
and DY cases. The effect of staple-shaped Wilson lines on T-even observables is
studied for the generalized tensor charge and a generalized transverse shift
related to the worm gear function g_1T. We emphasize the dependence of these
observables on the staple extent and the Collins-Soper evolution parameter. Our
numerical calculations use an n_f = 2+1 mixed action scheme with domain wall
valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.Comment: 25 pages, 13 figures; version accepted by journal. Contains
additional section explaining and summarizing the methodolog
Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting
In this paper we present a new technique for analysis of transverse momentum
dependent parton distribution functions, based on the Bessel weighting
formalism. The procedure is applied to studies of the double longitudinal spin
asymmetry in semi-inclusive deep inelastic scattering using a new dedicated
Monte Carlo generator which includes quark intrinsic transverse momentum within
the generalized parton model. Using a fully differential cross section for the
process, the effect of four momentum conservation is analyzed using various
input models for transverse momentum distributions and fragmentation functions.
We observe a few percent systematic offset of the Bessel-weighted asymmetry
obtained from Monte Carlo extraction compared to input model calculations,
which is due to the limitations imposed by the energy and momentum conservation
at the given energy/Q2. We find that the Bessel weighting technique provides a
powerful and reliable tool to study the Fourier transform of TMDs with
controlled systematics due to experimental acceptances and resolutions with
different TMD model inputs.Comment: 30 pages, 8 figures, enhanced discussion and interpretation of
results, new section on errors with an appendix, added references. Accepted
for publication in JHE
Quark Contributions to Nucleon Momentum and Spin from Domain Wall fermion calculations
We report contributions to the nucleon spin and momentum from light quarks
calculated using dynamical domain wall fermions with pion masses down to 300
MeV and fine lattice spacing a=0.084 fm. Albeit without disconnected diagrams,
we observe that spin and orbital angular momenta of both u and d quarks are
opposite, almost canceling in the case of the d quark, which agrees with
previous calculations using a mixed quark action. We also present the full
momentum dependence of n=2 generalized form factors showing little variation
with the pion mass.Comment: 7 pages, 5 figures, NT-LBNL-11-020, MIT-CTP-4323. Presented at the
29th International Symposium on Lattice Field Theory (Lattice 2011), Squaw
Valley, California, 10-16 Jul 201
Transverse momentum distributions inside the nucleon from lattice QCD
We study transverse momentum dependent parton distribution functions (TMDs) with
non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified
operator geometry show visible dipole deformations of spin-dependent quark momentum densities.United States. Dept. of Energy (grant DE-FG02-94ER40818
Transverse momentum dependent quark densities from Lattice QCD
We study transverse momentum dependent parton distribution functions (TMDs) with nonâlocal operators in lattice QCD, using MILCâLHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spinâdependent quark momentum densities.United States. Dept. of Energy (grant DEFG02- 94ER40818
Lattice QCD Studies of Transverse Momentum-Dependent Parton Distribution Functions
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering and the DrellâYan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped gauge link. Such a definition opens the possibility of evaluating TMDs within lattice QCD. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. Results for selected TMD observables are presented, including a particular focus on their dependence on a CollinsâSoper-type evolution parameter, which quantifies proximity of the staple-shaped gauge links to the light cone.United States. Dept. of Energy. Office of Nuclear Physics (Grants DE-SC0011090 and DE-AC05-06OR23177
- âŠ