211 research outputs found

    Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation

    Full text link
    We study certain stationary and time-evolution problems of trapped Bose-Einstein condensates using the numerical solution of the Gross-Pitaevskii equation with both spherical and axial symmetries. We consider time-evolution problems initiated by changing the interatomic scattering length or harmonic trapping potential suddenly in a stationary condensate. These changes introduce oscillations in the condensate which are studied in detail. We use a time iterative split-step method for the solution of the time-dependent Gross-Pitaevskii equation, where all nonlinear and linear nonderivative terms are treated separately from the time propagation with the kinetic energy terms. Even for an arbitrarily strong nonlinear term this leads to extremely accurate and stable results after millions of time iterations of the original equation.Comment: LaTeX2e (iop style files included), 17 pages, 6 EPS figures, accepted for publication in J. Phys. B: At. Mol. Opt. Phy

    Dynamics of quasi-one-dimensional bright and vortex solitons of a dipolar Bose-Einstein condensate with repulsive atomic interaction

    Full text link
    By numerical and variational analysis of the three-dimensional Gross-Pitaevskii equation we study the formation and dynamics of bright and vortex-bright solitons in a cigar-shaped dipolar Bose-Einstein condensate for large repulsive atomic interactions. Phase diagram showing the region of stability of the solitons is obtained. We also study the dynamics of breathing oscillation of the solitons as well as the collision dynamics of two solitons at large velocities. Two solitons placed side-by-side at rest coalesce to form a stable bound soliton molecule due to dipolar attraction.Comment: To obtain the included video clips S1, S2, S3 and S4, please download sourc

    Dynamics of gap solitons in a dipolar Bose-Einstein condensate on a three-dimensional optical lattice

    Full text link
    We suggest and study the stable disk- and cigar-shaped gap solitons of a dipolar Bose-Einstein condensate of 52^{52}Cr atoms localized in the lowest band gap by three optical-lattice (OL) potentials along orthogonal directions. The one-dimensional version of these solitons of experimental interest confined by an OL along the dipole moment direction and harmonic traps in transverse directions is also considered. Important dynamics of (i) breathing oscillation of a gap soliton upon perturbation and (ii) dragging of a gap soliton by a moving lattice along axial zz direction demonstrates the stability of gap solitons. A movie clip of dragging of three-dimensional gap soliton is included.Comment: To see the dragging movie clip please download sourc
    corecore