3 research outputs found

    A vivid way of differentiating benign and malig-nant cervical lymph node through b-mode ultrasonography and sonoelastography

    No full text
    Cervical lymphadenopathy is not a diagnosis but it is a sign or symp-tom. The etiology could be inflammatory or degenerative or neoplastic. Cervical lymph node evaluation plays a vital role in patients with head and neck cancers because the results determine the prognosis and choice of therapy. Ultrasonography can be used to assess the mor-phology, site, number, size and vascularity of cervical lymph node. However, the ultrasound criteria for metastatic lymph nodes are con-troversial. Sonoelastography is a novel imaging modality introduced as a non-invasive technique for evaluating cervical lymph nodes and to map the elastic properties of examined soft tissue. Neck lymph nodes are easily accessible and can be efficiently compressed against under-lying anatomical structures, with use of an ultrasound transducer for elastographic tissue characterization. The detail about the rigidity of a lymph node gives us the direction for percutaneous biopsy and nodal dissection under ultrasound guidance. Use of this information can also improve patient follow-up by enabling detection of cancer recurrence at an early stage. The study aims to differentiate benign and malignant cervical lymph nodes by observing the morphology, vascular Pattern and strain ratio cut-off value. In this trial 40 patients with cervical lym-phadenopathy were studied and the study concluded that Ultrasound elastography is a specific test unlike B-mode ultrasonography in dif-ferentiating benign and malignant cervical lymphadenopathy. The strain ratio cut-off value for benign vs malignant lymphadenopathy is 1.78. Thus Sonoelastography along with B-mode ultrasound increases the rate of detection of malignancy. [J Med Allied Sci. 2021; 11(2):172-177

    Not Available

    No full text
    Not AvailableA field experiment was conducted to investigate the soil microbial growth and enzymatic activity of Treated Distillery Effluent (TDE) and Bio-compost (BC) applied in sandy loam soils grown with Maize crop (Zea mays). Under split plot design with five main plots with addition of organics viz., No organics; application of TDE @ 0.5 lakh litres ha-1; TDE @ 1.0 lakh litres ha-1; Bio compost @ 5 t ha-1 and FYM @ 12.5 t ha-1 + biofertilizers. In addition, five subplot treatments viz., addition of inorganic fertilizers at different levels of recommended dose of NP fertilizers (0 %, 50 %, 75 % and 100 %) compared with 100 per cent recommended dose of NPK @ 150 :75: 75 of kg N, P2O5 and K2O ha-1. Application of TDE 1.0 lakh litres ha-1 resulted higher bacterial, fungal and actinomycetes population over control at all stages of crop growth. Indeed, the soil bacterial population recorded the highest value of 20.1 and 19.3 x106 CFU g-1 of soil with the application of TDE @ 1.0 lakh litres ha-1 compared to control at post-harvest stage. There was an increase in the soil fungal population to the tune of 30.3 per cent over control at post-harvest stage. Furthermore, application of TDE @ 1.0 lakh litres ha-1 recorded the highest soil actinomycetes population at all stages of crop growth. The soil enzyme activities as phosphatase, dehydrogenase and urease recorded the highest values of 12.8 μg p-nitrophenol g-1 soil hr-1; 2.96 μg TPF g-1 soil hr-1 and 5.16 μg NH4-N g-1 soil hr-1 respectively with the application of TDE @ 1.0 lakh litres ha-1. The soil microbial population and enzyme activities increased with the application of distillery effluent over control. Hence, it was observed that, Soil microbial activity had a direct impact on the plant nutrient availability as well as other favorable properties associated with soil productivityNot Availabl

    Not Available

    No full text
    Not AvailableA field experiment was conducted to investigate the soil microbial growth and enzymatic activity of Treated Distillery Effluent (TDE) and Bio-compost (BC) applied in sandy loam soils grown with Maize crop (Zeamays). Under split plot design with five main plots with addition of organics viz., No organics; application of TDE @ 0.5 lakh litres ha-1TDE @ 1.0 lakh litres ha; Bio compost @ 5 t ha-1 and FYM @ 12.5 t ha +biofertilizers. In addition, five subplot treatments viz., addition of inorganic fertilizers atdifferent levels of recommended dose of NP fertilizers (0 %, 50 %, 75 % and 100 %) compared with 100 per cent recommended dose of NPK @ 150 :75: 75 of kg N, P andK2O ha-1. Application of TDE 1.0 lakh litres ha-1 resulted higher bacterial, fungal and actinomycetes population over control at all stages of crop growth. Indeed, the soil bacterial population recorded the highest value of 20.1 and 19.3 x106 of soilwith the application of TDE @ 1.0 lakh litres ha-1 compared to control at post-harvest stage. There was an increase in the soil fungal population to the tune of 30.3 per cent over control at post-harvest stage. Furthermore, application of TDE @ 1.0 lakh litres ha-1 recorded the highest soil actinomycetes population at all stages of crop growth. The soil enzyme activities as phosphatase, dehydrogenase and urease recorded the highest values of12.8 µg p-nitrophenol g-1 soil hr-1; 2.96 µg TPF g-1 soil hr -1 and 5.16 µg NH4-N g -1 respectively with the application of TDE @ 1.0 lakh litres ha -1 . The soil microbial population and enzyme activities increased with the application of distillery effluent over control. Hence, it was observed that, Soil microbial activity had a direct impact on the plant nutrient availability as well as other favorable properties associated with soil productivity.Not Availabl
    corecore