421 research outputs found

    Taylor-Fourier integration

    Get PDF
    In this paper we introduce an algorithm which provides approximate solutions to semi-linear ordinary differential equations with highly oscillatory solutions that after an appropriate change of variables can be written as a non-autonomous system with (2π/ω)(2\pi/\omega)-periodic dependence on tt. The proposed approximate solutions are written in closed form as functions X(t,ω t)X(t,\omega\, t) where X(t,θ)X(t,\theta) is, (i) a truncated Fourier series in θ\theta for fixed tt, and (ii) a truncated Taylor series in tt for fixed θ\theta (that is the reason for the name of the proposed integrators). Such approximations are intended to be uniformly accurate in ω\omega (in the sense that their accuracy is not deteriorated as ω→∞\omega\to \infty). This feature implies that Taylor-Fourier approximations become more efficient than the application of standard numerical integrators for sufficiently high basic frequency ω\omega. The main goal of the paper is to propose a procedure to efficiently compute such approximations by combining power series arithmetic techniques and the FFT algorithm. We present numerical experiments that demonstrate the effectiveness of our approximation method through its application to well-known problems of interest.PID2022-136585NB-C22 MATHMODE (ITI456-22

    An implicit symplectic solver for high-precision long term integrations of the Solar System

    Get PDF
    We present FCIRK16, a 16th-order implicit symplectic integrator for long-term high precision Solar System simulations. Our integrator takes advantage of the near-Keplerian motion of the planets around the Sun by alternating Keplerian motions with corrections accounting for the planetary interactions. Compared to other symplectic integrators (the Wisdom and Holman map and its higher order generalizations) that also take advantage of the hierarchical nature of the motion of the planets around the central star, our methods require solving implicit equations at each time-step. We claim that, despite this disadvantage, FCIRK16 is more efficient than explicit symplectic integrators for high precision simulations thanks to: (i) its high order of precision, (ii) its easy parallelization, and (iii) its efficient mixed-precision implementation which reduces the effect of round-off errors. In addition, unlike typical explicit symplectic integrators for near Keplerian problems, FCIRK16 is able to integrate problems with arbitrary perturbations (non necessarily split as a sum of integrable parts). We present a novel analysis of the effect of close encounters in the leading term of the local discretization errors of our integrator. Based on that analysis, a mechanism to detect and refine integration steps that involve close encounters is incorporated in our code. That mechanism allows FCIRK16 to accurately resolve close encounters of arbitrary bodies. We illustrate our treatment of close encounters with the application of FCIRK16 to a point mass Newtonian 15-body model of the Solar System (with the Sun, the eight planets, Pluto, and five main asteroids) and a 16-body model treating the Moon as a separate body. We also present some numerical comparisons of FCIRK16 with a state-of-the-art high order explicit symplectic scheme for 16-body model that demonstrate the superiority of our integrator when very high precision is required.Consolidated Research Group MATHMODE (IT1294-19

    An implicit symplectic solver for high-precision long term integrations of the Solar System

    Full text link
    Compared to other symplectic integrators (the Wisdom and Holman map and its higher order generalizations) that also take advantage of the hierarchical nature of the motion of the planets around the central star, our methods require solving implicit equations at each time-step. We claim that, despite this disadvantage, FCIRK16 is more efficient than explicit symplectic integrators for high precision simulations thanks to: (i) its high order of precision, (ii) its easy parallelization, and (iii) its efficient mixed-precision implementation which reduces the effect of round-off errors. In addition, unlike typical explicit symplectic integrators for near Keplerian problems, FCIRK16 is able to integrate problems with arbitrary perturbations (non necessarily split as a sum of integrable parts). We present a novel analysis of the effect of close encounters in the leading term of the local discretization errors of our integrator. Based on that analysis, a mechanism to detect and refine integration steps that involve close encounters is incorporated in our code. That mechanism allows FCIRK16 to accurately resolve close encounters of arbitrary bodies. We illustrate our treatment of close encounters with the application of FCIRK16 to a point mass Newtonian 15-body model of the Solar System (with the Sun, the eight planets, Pluto, and five main asteroids) and a 16-body model treating the Moon as a separate body. We also present some numerical comparisons of FCIRK16 with a state-of-the-art high order explicit symplectic scheme for 16-body model that demonstrate the superiority of our integrator when very high precision is required

    An Intrinsic Description of the Nonlinear Aeroelasticity of Very Flexible Wings

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90662/1/AIAA-2011-1917-972.pd

    Multi-objective heuristics applied to robot task planning for inspection plants

    Get PDF
    Robotics are generally subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this regard the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by presenting experimental results obtained over realistic scenarios of two heuristic solvers (MOHS and NSGA-II) aimed at efficiently scheduling tasks in robotic swarms that collaborate together to accomplish a mission. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks whereas the relative execution order of such tasks within the schedule of certain robots is computed based on the Traveling Salesman Problem (TSP). Experimental results in three different deployment scenarios reveal the goodness of the proposed technique based on the Multi-objective Harmony Search algorithm (MOHS) in terms of Hypervolume (HV) and Coverage Rate (CR) performance indicators
    • …
    corecore