123 research outputs found

    Integrative genomic approaches in cervical cancer: implications for molecular pathogenesis

    Get PDF
    Cervical cancer (CC) as a single diagnostic entity exhibits differences in clinical behavior and poor outcomes in response to therapy in advanced tumors. Although infection of high-risk human papillomavirus is recognized as an important initiating event in cervical tumorigenesis, stratification of CC into subclasses for progression and response to treatment remains elusive. Existing knowledge of genetic, epigenetic and transcriptional alterations is inadequate in addressing the issues of diagnosis, progression and response to treatment. Recent technological advances in high-throughput genomics and the application of integrative approaches have greatly accelerated gene discovery, facilitating the identification of molecular targets. In this article, we discuss the results obtained by preliminary integrative analysis of DNA copy number increases and gene expression, utilizing the two most common copy number-gained regions of 5p and 20q in identifying gene targets in CC. These analyses provide insights into the roles of genes such as RNASEN, POLS and SKP2 on 5p, KIF3B, RALY and E2F1 at 20q11.2 and CSE1L, ZNF313 and B4GALT5 at 20q13.13. Future integrative applications using additional datasets, such as mutations, DNA methylation and clinical outcomes, will raise the promise of accomplishing the identification of biological pathways and molecular targets for therapies for patients with CC

    PCDH10, a novel p53 transcriptional target in regulating cell migration

    Get PDF
    Cell cycle arrest, senescence and apoptosis are commonly regarded as the major tumor suppression mechanisms of p53. However, accumulating evidence indicates that loss of these canonical functions is not sufficient for tumor formation, highlighting the complexity of p53-mediated tumor suppression. PCDH10 belongs to a proto cadherin protein family and is a potential tumor suppressor protein as the dysregulation of PCDH10 gene frequently existed in multiple human tumors. Here, we found that PCDH10 is a transcriptional target of p53 and that the levels of PCDH10 expression can be induced by wild type p53 but not mutant p53 in a number of human cancer cell lines. Moreover, we identified a p53 consensus binding site located in the PCDH10 promoter region that is responsive to p53 regulation. Although upregulation of PCDH10 has no obvious effect on growth arrest or apoptosis in human cells, PCDH10 exhibits inhibitory roles in cancer cell motility and cell migration. These results suggest an important role of p53 in regulating tumor cell migration through activating PCDH10 expression and support the notion that non-canonical activities of p53 may contribute to its tumor suppressor function in vivo
    • …
    corecore