18 research outputs found

    Microstructural characterization and wear properties of silver and gold nanoparticle doped K-Mg-Al-Si-O-F glass-ceramics

    No full text
    In ascertaining the effects of silver (Ag) and gold (Au) nanoparticles on crystallization of boro-alumino-silicate system; the K2O-MgO-Al2O3-SiO2-B2O3-F glasses doped with/without 0.2 wt% Ag- and Au- content were melt quenched at 1550 degrees C. Doping of nanoparticles considerably increased the glass-transition temperature and softening point but decreased the thermal expansion. A sharp crystallization exotherm in differential scanning calorimetry (DSC) is observed at 750 degrees C (+/- 1 degrees C) for glass without nanoparticle and that broadened to 800-855 degrees C when contains nanoparticle. Opaque glass-ceramics were derived from the glasses by controlled heat-treatment at 1050 degrees C with predominant crystalline phase fluorophlogopite (KMg3AlSi3O10F2) mica. Traces of Ag- and Au- particles were also identified from X-ray diffraction (XRD) technique. The activation energy (E-c) of crystallization (344 +/- 17 kJ/mol) is decreased to 233 (+/- 12) and 307 (+/- 15) kJ/mol (Kissinger method) on doping with Ag- and Au- nanoparticles, respectively. Compact microstructure (FESEM) composed of rock like and plate-like mica crystals are developed in base glass-ceramic and that gets restructured to interlocked type morphology in presence of Ag- nanoparticle. Significant microstructural change induced by nanoparticle addition caused the decrease in microhardness (4.31-4.66 GPa) and increase in thermal expansion. Friction and wear testing under reciprocative sliding (using WC-Co ball) exposed that the average coefficient of friction (COF) is 0.60 +/- 0.2 for all glass-ceramics at 20 N load and 10 Hz frequency. At a lower load of 5 N, the average COF value is increased from 0.69 to 0.92 on use of Au-nanoparticle. A Similar trend was also observed at 10 N load as COF increased from 0.62 to 0.78

    Processing methods for ultra-high temperature ceramics

    No full text
    Ultra-high-temperature ceramics (UHTCs) are a group of materials that can withstand ultra high temperatures (1600-3000 oC) which will be encountered by future hypersonic re-entry vehicles. Future re-entry vehicles will have sharp edges to improve flight performance. The sharp leading edges result in higher surface temperature than that of the actual blunt edged vehicles that could not be withstood by the conventional thermal protection system materials. To withstand the intense heat generated when these vehicles dip in and out of the upper atmosphere, UHTC materials are needed. UHTC materials are composed of borides of early transition metals. From the larger list of borides, ZrB2 and HfB2 have received the most attention as potential candidates for leading edge materials because their oxidation resistance is superior to that of other borides due to the stability of the ZrO2 and HfO2 scales that form on these materials at elevated temperatures in oxidizing environments. Processing of these materials is very difficult as these materials are very refractory in nature. In this chapter, processes available for powder synthesis, fabrication of dense bodies, and coating processes is discussed. </jats:p
    corecore