16 research outputs found
Targeting in situ and imaging multiple inflammatory biomarkers with quantum dots in DSS model of colitis
Poster presented at Biomedical Technology Showcase 2006, Philadelphia, PA. Retrieved 18 Aug 2006 from http://www.biomed.drexel.edu/new04/Content/Biomed_Tech_Showcase/Poster_Presentations/Papazoglou_6.pdf.Inflammatory Bowel Disease affects nearly 1.5 million people. Currently, there are no efficient and reliable methods to quantify the degree of inflammation in these patients. The objective here was to image and quantify in an experimental model of colitis, MPO, IL1_ and TNF_ (proinflammatory cytokines) using Quantum Dots (QDs) conjugated with specific antibodies. The resulting fluorescence intensity was then used as a measure of concentration of MPO and in turn inflammation. The fluorescent images obtained from animals showed sequential increase in fluorescence intensity of MPO correlating (R = 0.96) with clinical disease. Fluorescent images also showed co-localization of all the three markers in both acute as well as chronic inflammation. These observations suggest that QD bioconjugates can be used nanotools to image biomarkers of inflammation
HT-FED2004-56252 SIMULATIONS OF HEAT TRANSPORT DURING TRANSIENT ELECTROSTATIC DISCHARGE EVENTS IN A SUB-MICRON TRANSISTOR
ABSTRACT The thermal problem associated with the transient electrostatic discharge phenomena in sub-micron silicon transistors is fast becoming a major reliability concern in IC packages. Currently, Fourier diffusion and some simple models based on the solution to the phonon Boltzmann transport equation (BTE) are used to predict failure (melting of silicon) in these transistors. In this study, a more comprehensive model, based on the phonon BTE and incorporating considerable details of phonon physics, is proposed and used to study the ESD problem. Transient results from the model reveal very significant discrepancies when compared to results from the other models in the literature