20 research outputs found

    myo-Inositol metabolism in plants

    No full text
    The multifunctional position supplied by myo-inositol is emerging as a central feature in plant biochemistry and physiology. In this critique, attention is drawn to metabolic aspects and current assessment is made of manifold ways in which myo-inositol and its metabolic products impact growth and development. The fact that a unique enzyme, common to all eukaryotic organisms where such assessment has been undertaken, controls conversion of D-glucose-6-P to 1L-myo-inositol-1-P provides a useful point of departure for this brief metabolic survey. Some aspects such as biosynthesis, phosphate and polyphosphate ester hydrolysis, and O-methylation of myo-inositol have captured the consideration of molecular biologists, yet other aspects including oxidation, conjugation, and transfer to phospholipids remain virtually untouched from this viewpoint. Here, an attempt is made to enlist new interest in all facets of myo-inositol metabolism and its place in plant biology

    Conformational studies of myo-inositol phosphates

    No full text
    The discovery of the second messenger role of myo-inositol 1,4,5-trisdihydrogenphosphate [Ins(1,4,5)P3] has triggered tremendous interest in investigating the structure, metabolism, and biological roles of inositol phosphates. Although the conformation of phytic acid [(myo-inositol hexakisdihydrogenphosphate), InsP6] has been the subject of much study, the conformations of lower inositol phosphates such as inositol-pentakis-, tetrakis-, and tris-dihydrogenphosphates have not been investigated. We investigated, by 1H NMR spectroscopy, the conformations of inositol phosphates (InsP5, InsP4, InsP3, InsP2, and InsP1) and monitored the influence of pH on conformational preferences. Ins P6 adopts the sterically stable 1ax/5eq (one phosphate in the axial position and five phosphates in the equatorial position) conformation in the pH range 0.5-9.0, and the sterically hindered 5ax/1eq (five phosphates in the axial position and one phosphate in the equatorial position) conformation above pH 9.5. At pH 9.5, both conformations are in dynamic equilibrium. Ins(1,2,3,4,6)P5 and Ins(1,2,3,5,6)P5 adopt the 1ax/5eq form in the pH range 1.0-9.0; in the pH range 9.5-13.0, the 1ax/5eq and 5ax/1eq conformations are in dynamic equilibrium. In contrast to InsP6 and InsP5 all the lower inositol phosphates (InsP4 to InsP1) investigated adopt the 1ax/5eq conformation over the entire pH range, 1.0-13.0. Preference for the 5ax/1eq conformation by InsP6 and InsP5 is probably due to decreased electrostatic repulsion between negatively charged vicinal equatorial phosphates in the 1ax/Seq conformation and stabilization of the sterically hindered 5ax/leq conformation by hydrogen bonding and/or sodium counter-ions bonding between the syn-oriented phosphates. On the basis of conformations adopted by the inositol phosphates (Ins P6 to Ins P1) at different pH, we conclude that the presence of four or five equatorial phosphates on the inositol ring induces a change in the conformation from the sterically unhindered 1ax/5eq structure to the sterically hindered 5ax/1eq conformation, at high pH. This investigation illustrates that the conformational preferences of inositol phosphates at different pH is unique to the particular isomer and does not parallel the behaviour of phytic acid

    Enhancement of alkaline phytase production in Pichia pastoris: Influence of gene dosage, sequence optimization and expression temperature

    No full text
    Supplementation of animal feed with phytases has proven to be an effective strategy to alleviate phosphorous contamination of soil and water bodies. The inability of non-ruminant animals to digest phytates in corn and soybeans contributes to environmental contamination. Alkaline phytase from lily pollen (LlALP) exhibits unique catalytic and thermal stability properties that could be useful as a feed supplement. rLlALP2 was successfully expressed in Pichia pastoris; however, enzyme yields were modest (8-10 mg/L). In this paper, we describe our efforts to enhance rLlALP2 yield by investigating the influence of the following potential limiting factors: transgene copy number, codon bias, sequence optimization, and temperature during expression. Data presented indicate that increasing rLlAlp2 copy number was detrimental to heterologous expression, clones with one copy of wt-rLlAlp2 produced the highest activity, clones with two, four and seven or more copies produced 70%, 25% and 10% respectively, of enzyme activity implying that gene dosage is not limiting rLlALP2 yield. Use of a sequence-optimized rLlAlp2 increased the yield of the active enzyme by 25-50% in one/two copy clones, suggesting that translational efficiency is not a major bottleneck for rLlALP2 expression. Reducing the temperature during heterologous expression led to increases of 1.2-20-fold suggesting that protein folding and post-translational processes may be the dominant factors limiting rLlALP2 expression. Early knowledge of the transgene copy number allowed us to develop a more rational strategy for yield enhancement. Cumulatively, sequence optimization and temperature reduction led to the doubling of rLlALP2 enzyme activity in P. pastoris. © 2012 Published by Elsevier Inc

    Synergy of intramolecular hydrogen-bonding network in myo-inositol 2-monophosphate: Theoretical investigations into the electronic structure, proton transfer, and pK \u3c inf\u3e a

    No full text
    This work demonstrates the pivotal role that an intramolecular hydrogen-bonding network (intra-HBN) plays in the determination of the conformation of myo-inositol 2-monophosphate (Ins(2)P1), a member of the inositol phosphate family of compounds, which are important participants in the role that phosphates play in biological and environmental chemistry. For biologically significant compounds that contain phosphate and hydroxyl groups, Ins(2)P1 is a model system for studying both the primary forces that determine their conformations and their chemical properties from the effect of phosphate group addition. We performed ab initio calculations to determine the intra-HBN within important thermally accessible conformations for neutral Ins(2)P1 and its anions, Ins(2)P11- and Ins(2)P12-. The results show that the global minima prefer 1a/5e structures where the phosphate group is in the axial position with all -OH groups in the equatorial positions. The calculations of transition state structures for ring inversion at each ionization state predict an activation energy of 18.16 kcal/mol for the neutral species in water, while the activation energy is lower for the charged compounds, 15.62 kcal/mol for Ins(2)P 11- and 12.48 kcal/mol for Ins(2)P12-. The pKa values of Ins(2)P1 were calculated by modeling the solvent as a polarizable continuum medium (PCM) and as explicit solvent molecules. These values are in good agreement with experimental data. A novel four-center pattern of hydrogen bonding was found to stabilize the system. The intramolecular proton transfer across a low barrier hydrogen bond between the charged phosphate and hydroxyl groups was found to occur under standard conditions with an activation energy that is less than 0.5 kcal/mol. © 2005 American Chemical Society

    Heterologous expression and functional characterization of a plant alkaline phytase in Pichia pastoris

    No full text
    Phytases catalyze the sequential hydrolysis of phytic acid (myo-insositol hexakisphosphate), the most abundant inositol phosphate in cells. Phytic acid constitutes 3-5% of the dry weight of cereal grains and legumes such as corn and soybean. The high concentration of phytates in animal feed and the inability of non-ruminant animals such as swine and poultry to digest phytates leads to phosphate contamination of soil and water bodies. The supplementation of animal feed with phytases results in increased bioavailability to animals and decreased environmental contamination. Therefore, phytases are of great commercial importance. Phytases with a range of properties are needed to address the specific digestive needs of different animals. Alkaline phytase (LlALP1 and LlALP2) which possess unique catalytic properties that have the potential to be useful as feed and food supplement has been identified in lily pollen. Substantial quantities of alkaline phytase are needed for animal feed studies. In this paper, we report the heterologous expression of LlALP2 from lily pollen in Pichia pastoris. The expression of recombinant LlALP2 (rLlALP2) was optimized by varying the cDNA coding for LlALP2, host strain and growth conditions. The catalytic properties of recombinant LlALP2 were investigated extensively (substrate specificity, pH- and temperature dependence, and the effect of Ca2+, EDTA and inhibitors) and found to be very similar to that of the native LlALP2 indicating that rLlALP2 from P. pastoris can serve as a potential source for structural and animal feed studies. © 2010 Elsevier Inc. All rights reserved

    Extracellular expression of alkaline phytase in Pichia pastoris: Influence of signal peptides, promoters and growth medium

    Get PDF
    Alkaline phytase isolated from pollen grains of Lilium longiflorum (LlALP) possesses unique catalytic and thermal stability properties that suggest it has the potential to be used as a feed supplement. However, substantial amounts of active enzymes are needed for animal feed studies and endogenous levels of LlALP in lily pollen are too low to provide the required amounts. Active rLlALP2 (coded by LlAlp2, one of two isoforms of alkaline phytase cDNA identified in lily pollen) has been successfully expressed in intracellular compartments of Pichia pastoris, however enzyme yields have been modest (25–30 mg/L) and purification of the enzyme has been challenging. Expression of foreign proteins to the extracellular medium of P. pastoris greatly simplifies protein purification because low levels of endogenous proteins are secreted by the yeast. In this paper, we first describe the generation of P. pastoris strains that will secrete rLlALP2 to the extracellular medium. Data presented here indicates that deletion of native signal peptides at the N- and C-termini of rLlALP2 enhanced α-mating factor (α-MF)-driven secretion by four-fold; chicken egg white lysozyme signal peptide was ineffective in the extracellular secretion of rLlALP2. Second, we describe our efforts to increase expression levels by employing a constitutive promoter from the glyceraldehyde-3-phosphate dehydrogenase gene (PGAP) in place of the strong, tightly controlled promoter of alcohol oxidase 1 gene (PAOX1). PGAP enhanced the extracellular expression levels of rLlALP2 compared to PAOX1. Finally, we report on the optimization of the culture medium to enhance yields of rLlALP2. The strength of PGAP varies depending on the carbon source available for cell growth; secreted expression of rLlALP2 was highest when glycerol was the carbon source. The addition of histidine and Triton X-100 also enhanced extracellular expression. Taken together, the employment of PGAP under optimized culture conditions resulted in approximately eight-fold (75–80 mg/L) increase in extracellular activity compared to PAOXI (8–10 mg/L). The P. pastoris expression system can be employed as a source of active alkaline phytase for animal feed studies

    Application of two-dimensional total correlation spectroscopy for structure determination of individual inositol phosphates in a mixture

    No full text
    The discovery of the second messenger role of myoinositol(1,4,5)trisphosphate has triggered tremendous interest in investigating the structures and metabolism of inositol phosphates. The structures of these compounds are established by first purifying the compounds of interest and then identifying the structures through chemical degradation or NMR analysis. In this paper we describe a method that allows simultaneous determination, without separation, of the structures of multiple inositol phosphates in a mixture. The use of two-dimensional total correlation spectroscopy (2D TOCSY) experiments together with subspectra extracted from 2D TOCSY data allowed us to determine, in 3 to 4 h, the structures of five compounds in a mixture, without prior separation. © 1995 Academic Press, Inc
    corecore