6,568 research outputs found
Estimation of C II and C II* column densities along Galactic sight-lines
We present interstellar C II (1334.5323 \AA) and C II* (1335.7077 \AA) column
density measurements along 14 Galactic sight-lines. These sight-lines sample a
variety of Galactic disk environments and include paths that range nearly two
orders of magnitude in average hydrogen densities () along the lines of
sight. Five of the sight-lines show super-Solar gas phase abundances of carbon.
Our results show that the excess carbon along these sight-lines may result from
different mechanisms taking place in the regions associated with these stars.Comment: 9 pages, 3 figures; Accepted for publication in BAS
Finite Temperature Magnetism in Fractional Quantum Hall Systems: Composite Fermion Hartree-Fock and Beyond
Using the Hamiltonian formulation of Composite Fermions developed recently,
the temperature dependence of the spin polarization is computed for the
translationally invariant fractional quantum Hall states at and
in two steps. In the first step, the effect of particle-hole
excitations on the spin polarization is computed in a Composite Fermion
Hartree-Fock approximation. The computed magnetization for lies above
the experimental results for intermediate temperatures indicating the
importance of long wavelength spin fluctuations which are not correctly treated
in Hartree-Fock. In the second step, spin fluctuations beyond Hartree-Fock are
included for by mapping the problem on to the coarse-grained
continuum quantum ferromagnet. The parameters of the effective continuum
quantum ferromagnet description are extracted from the preceding Hartree-Fock
analysis. After the inclusion of spin fluctuations in a large-N approach, the
results for the finite-temperature spin polarization are in quite good
agreement with the experiments.Comment: 10 pages, 8 eps figures. Two references adde
Planetary Nebulae with Ultra-Violet Imaging Telescope (UVIT): Far Ultra-violet halo around the Bow Tie nebula (NGC 40)
Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting
an interaction of the high speed wind from WC8 central star (CS) with the
nebula. It shows strong Civ 1550 {\AA} emission that cannot be explained by
thermal processes alone. We present here the first map of this nebula in C IV
emission, using broad band filters on the UVIT.
Aims. To map the hot C IV emitting gas and its correspondence with soft X-ray
(0.3-8 keV) emitting regions, in order to study the shock interaction with the
nebula and the ISM. This also illustrates the potential of UVIT for nebular
studies.
Methods. Morphological study of images of the nebula obtained at an angular
resolution of about 1.3" in four UVIT filter bands that include C IV 1550 {\AA}
and C II] 2326 {\AA} lines and UV continuum. Comparisons with X-ray, optical,
and IR images from literature.
Results. The C II] 2326 {\AA} images show the core of the nebula with two
lobes on either side of CS similar to [N II]. The C IV emission in the core
shows similar morphology and extant as that of diffuse X-ray emission
concentrated in nebular condensations. A surprising UVIT discovery is the
presence of a large faint FUV halo in FUV Filter with {\lambda}eff of 1608
{\AA}. The UV halo is not present in any other UV filter. FUV halo is most
likely due to UV fluorescence emission from the Lyman bands of H2 molecules.
Unlike the optical and IR halo, FUV halo trails predominantly towards
south-east side of the nebular core, opposite to the CS's proper motion
direction.
Conclusions. Morphological similarity of C IV 1550 {\AA} and X-ray emission
in the core suggests that it results mostly from interaction of strong CS wind
with the nebula. The FUV halo in NGC 40 highlights the existence of H2
molecules extensively in the regions even beyond the optical and IR halos.Comment: 4 pages, 5 figures, accepted for publication as a letter in Astronomy
& Astrophysic
On supersymmetry breaking in string theory from gauge theory in a throat
We embed the supersymmetry breaking mechanism in N=1 SQCD of hep-th/0602239
in a smooth superstring theory using D-branes in the background R^4 \times
SL(2)_{k=1}/U(1) which smoothly captures the throat region of an intersecting
NS5-brane configuration. A controllable deformation of the supersymmetric
branes gives rise to the mass deformation of the magnetic SQCD theory on the
branes. The consequent instability on the open string worldsheet can be
followed onto a stable non-supersymmetric configuration of D-branes which
realize the metastable vacuum configuration in the field theory. The new brane
configuration is shown to backreact onto the background such as to produce
different boundary conditions for the string fields in the radial direction
compared to the supersymmetric configuration. In the string theory, this is
interpreted to mean that the supersymmetry breaking is explicit rather than
spontaneous.Comment: 29 pages, harvmac, 8 figures; v2 typos corrected, reference adde
Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation
I show that the hamiltonian theory of Composite Fermions (CF) is capable of
yielding a unified description in fair agreement with recent experiments on
polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu =
p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I
show how rotational invariance and two dimensionality can make the underlying
interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure
Planetary Nebulae with UVIT II: Revelations from FUV vision of Butterfly Nebula NGC 6302
The high excitation planetary nebula, NGC 6302, has been imaged in two
far-ultraviolet (FUV) filters, F169M (Sapphire; {\lambda}: 1608
{\AA}) and F172M (Silica; {\lambda}: 1717 {\AA}) and two NUV
filters, N219M (B15; {\lambda}: 2196 {\AA}) and N279N (N2;
{\lambda}: 2792 {\AA}) with the Ultra Violet Imaging Telescope
(UVIT). The FUV F169M image shows faint emission lobes that extend to about 5
arcmin on either side of the central source. Faint orthogonal collimated
jet-like structures are present on either side of the FUV lobes through the
central source. These structures are not present in the two NUV filters nor in
the FUV F172M filter. Optical and IR images of NGC 6302 show bright emission
bipolar lobes in the east-west direction with a massive torus of molecular gas
and dust seen as a dark lane in the north-south direction. The FUV lobes are
much more extended and oriented at a position angle of 113{\deg}. They and the
jet-like structures might be remnants of an earlier evolutionary phase, prior
to the dramatic explosive event that triggered the Hubble type bipolar flows
approximately 2200 years ago. The source of the FUV lobe and jet emission is
not known, but is likely due to fluorescent emission from H molecules. The
cause of the difference in orientation of optical and FUV lobes is not clear
and, we speculate, could be related to two binary interactions.Comment: 9 pages, 5 figures, accepted for publication in Astronomy &
Astrophysic
Analysis of the Wicking and Thin-film Evaporation Characteristics of Microstructures
The topology and geometry of microstructures play a crucial role in determining their heat transfer performance in passive cooling devices such as heat pipes. It is therefore important to characterize microstructures based on their wicking performance, the thermal conduction resistance of the liquid filling the microstructure, and the thin-film characteristics of the liquid meniscus. In the present study, the free-surface shapes of the static liquid meniscus in common microstructures are modeled using SURFACE EVOLVER for zero Bond number. Four well-defined topologies, viz., surfaces with parallel rectangular ribs, horizontal parallel cylinders, vertically aligned cylinders, and spheres (the latter two in both square and hexagonal packing arrangements), are considered. Nondimensional capillary pressure, average distance of the liquid free-surface from solid walls (a measure of the conduction resistance of the liquid), total exposed area, and thin-film area are computed. These performance parameters are presented as functions of the nondimensional geometrical parameters characterizing the microstructures, the volume of the liquid filling the structure, and the contact angle between the liquid and solid. Based on these performance parameters, hexagonally-packed spheres on a surface are identified to be the most efficient microstructure geometry for wicking and thin-film evaporation. The solid-liquid contact angle and the nondimensional liquid volume that yield the best performance are also identified. The optimum liquid level in the wick pore that yields the highest capillary pressure and heat transfer is obtained by analyzing the variation in capillary pressure and heat transfer with liquid level and using an effective thermal resistance model for the wick
Evolution of Magnetism in Single-Crystal Honeycomb Iridates
We report the successful synthesis of single-crystals of the layered iridate,
(NaLi)IrO, , and a thorough study of
its structural, magnetic, thermal and transport properties. The new compound
allows a controlled interpolation between NaIrO and LiIrO,
while maintaing the novel quantum magnetism of the honeycomb Ir planes.
The measured phase diagram demonstrates a dramatic suppression of the N\'eel
temperature, , at intermediate suggesting that the magnetic order in
NaIrO and LiIrO are distinct, and that at , the
compound is close to a magnetically disordered phase that has been sought after
in NaIrO and LiIrO. By analyzing our magnetic data with a
simple theoretical model we also show that the trigonal splitting, on the
Ir ions changes sign from NaIrO and LiIrO, and the
honeycomb iridates are in the strong spin-orbit coupling regime, controlled by
\jeff=1/2 moments.Comment: updated version with more dat
- …