6,568 research outputs found

    Estimation of C II and C II* column densities along Galactic sight-lines

    Full text link
    We present interstellar C II (1334.5323 \AA) and C II* (1335.7077 \AA) column density measurements along 14 Galactic sight-lines. These sight-lines sample a variety of Galactic disk environments and include paths that range nearly two orders of magnitude in average hydrogen densities () along the lines of sight. Five of the sight-lines show super-Solar gas phase abundances of carbon. Our results show that the excess carbon along these sight-lines may result from different mechanisms taking place in the regions associated with these stars.Comment: 9 pages, 3 figures; Accepted for publication in BAS

    Finite Temperature Magnetism in Fractional Quantum Hall Systems: Composite Fermion Hartree-Fock and Beyond

    Full text link
    Using the Hamiltonian formulation of Composite Fermions developed recently, the temperature dependence of the spin polarization is computed for the translationally invariant fractional quantum Hall states at ν=1/3\nu=1/3 and ν=2/5\nu=2/5 in two steps. In the first step, the effect of particle-hole excitations on the spin polarization is computed in a Composite Fermion Hartree-Fock approximation. The computed magnetization for ν=1/3\nu=1/3 lies above the experimental results for intermediate temperatures indicating the importance of long wavelength spin fluctuations which are not correctly treated in Hartree-Fock. In the second step, spin fluctuations beyond Hartree-Fock are included for ν=1/3\nu=1/3 by mapping the problem on to the coarse-grained continuum quantum ferromagnet. The parameters of the effective continuum quantum ferromagnet description are extracted from the preceding Hartree-Fock analysis. After the inclusion of spin fluctuations in a large-N approach, the results for the finite-temperature spin polarization are in quite good agreement with the experiments.Comment: 10 pages, 8 eps figures. Two references adde

    Planetary Nebulae with Ultra-Violet Imaging Telescope (UVIT): Far Ultra-violet halo around the Bow Tie nebula (NGC 40)

    Full text link
    Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high speed wind from WC8 central star (CS) with the nebula. It shows strong Civ 1550 {\AA} emission that cannot be explained by thermal processes alone. We present here the first map of this nebula in C IV emission, using broad band filters on the UVIT. Aims. To map the hot C IV emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions, in order to study the shock interaction with the nebula and the ISM. This also illustrates the potential of UVIT for nebular studies. Methods. Morphological study of images of the nebula obtained at an angular resolution of about 1.3" in four UVIT filter bands that include C IV 1550 {\AA} and C II] 2326 {\AA} lines and UV continuum. Comparisons with X-ray, optical, and IR images from literature. Results. The C II] 2326 {\AA} images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extant as that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint FUV halo in FUV Filter with {\lambda}eff of 1608 {\AA}. The UV halo is not present in any other UV filter. FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, FUV halo trails predominantly towards south-east side of the nebular core, opposite to the CS's proper motion direction. Conclusions. Morphological similarity of C IV 1550 {\AA} and X-ray emission in the core suggests that it results mostly from interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the existence of H2 molecules extensively in the regions even beyond the optical and IR halos.Comment: 4 pages, 5 figures, accepted for publication as a letter in Astronomy & Astrophysic

    On supersymmetry breaking in string theory from gauge theory in a throat

    Get PDF
    We embed the supersymmetry breaking mechanism in N=1 SQCD of hep-th/0602239 in a smooth superstring theory using D-branes in the background R^4 \times SL(2)_{k=1}/U(1) which smoothly captures the throat region of an intersecting NS5-brane configuration. A controllable deformation of the supersymmetric branes gives rise to the mass deformation of the magnetic SQCD theory on the branes. The consequent instability on the open string worldsheet can be followed onto a stable non-supersymmetric configuration of D-branes which realize the metastable vacuum configuration in the field theory. The new brane configuration is shown to backreact onto the background such as to produce different boundary conditions for the string fields in the radial direction compared to the supersymmetric configuration. In the string theory, this is interpreted to mean that the supersymmetry breaking is explicit rather than spontaneous.Comment: 29 pages, harvmac, 8 figures; v2 typos corrected, reference adde

    Transport in Passive, High Thermal Conductivity Heat Spreaders

    Get PDF

    Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation

    Full text link
    I show that the hamiltonian theory of Composite Fermions (CF) is capable of yielding a unified description in fair agreement with recent experiments on polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu = p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I show how rotational invariance and two dimensionality can make the underlying interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure

    Planetary Nebulae with UVIT II: Revelations from FUV vision of Butterfly Nebula NGC 6302

    Full text link
    The high excitation planetary nebula, NGC 6302, has been imaged in two far-ultraviolet (FUV) filters, F169M (Sapphire; {\lambda}eff_{\rm eff}: 1608 {\AA}) and F172M (Silica; {\lambda}eff_{\rm eff}: 1717 {\AA}) and two NUV filters, N219M (B15; {\lambda}eff_{\rm eff}: 2196 {\AA}) and N279N (N2; {\lambda}eff_{\rm eff}: 2792 {\AA}) with the Ultra Violet Imaging Telescope (UVIT). The FUV F169M image shows faint emission lobes that extend to about 5 arcmin on either side of the central source. Faint orthogonal collimated jet-like structures are present on either side of the FUV lobes through the central source. These structures are not present in the two NUV filters nor in the FUV F172M filter. Optical and IR images of NGC 6302 show bright emission bipolar lobes in the east-west direction with a massive torus of molecular gas and dust seen as a dark lane in the north-south direction. The FUV lobes are much more extended and oriented at a position angle of 113{\deg}. They and the jet-like structures might be remnants of an earlier evolutionary phase, prior to the dramatic explosive event that triggered the Hubble type bipolar flows approximately 2200 years ago. The source of the FUV lobe and jet emission is not known, but is likely due to fluorescent emission from H2_2 molecules. The cause of the difference in orientation of optical and FUV lobes is not clear and, we speculate, could be related to two binary interactions.Comment: 9 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Analysis of the Wicking and Thin-film Evaporation Characteristics of Microstructures

    Get PDF
    The topology and geometry of microstructures play a crucial role in determining their heat transfer performance in passive cooling devices such as heat pipes. It is therefore important to characterize microstructures based on their wicking performance, the thermal conduction resistance of the liquid filling the microstructure, and the thin-film characteristics of the liquid meniscus. In the present study, the free-surface shapes of the static liquid meniscus in common microstructures are modeled using SURFACE EVOLVER for zero Bond number. Four well-defined topologies, viz., surfaces with parallel rectangular ribs, horizontal parallel cylinders, vertically aligned cylinders, and spheres (the latter two in both square and hexagonal packing arrangements), are considered. Nondimensional capillary pressure, average distance of the liquid free-surface from solid walls (a measure of the conduction resistance of the liquid), total exposed area, and thin-film area are computed. These performance parameters are presented as functions of the nondimensional geometrical parameters characterizing the microstructures, the volume of the liquid filling the structure, and the contact angle between the liquid and solid. Based on these performance parameters, hexagonally-packed spheres on a surface are identified to be the most efficient microstructure geometry for wicking and thin-film evaporation. The solid-liquid contact angle and the nondimensional liquid volume that yield the best performance are also identified. The optimum liquid level in the wick pore that yields the highest capillary pressure and heat transfer is obtained by analyzing the variation in capillary pressure and heat transfer with liquid level and using an effective thermal resistance model for the wick

    Evolution of Magnetism in Single-Crystal Honeycomb Iridates

    Get PDF
    We report the successful synthesis of single-crystals of the layered iridate, (Na1−x_{1-x}Lix_{x})2_2IrO3_3, 0≤x≤0.90\leq x \leq 0.9, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na2_2IrO3_3 and Li2_2IrO3_3, while maintaing the novel quantum magnetism of the honeycomb Ir4+^{4+} planes. The measured phase diagram demonstrates a dramatic suppression of the N\'eel temperature, TNT_N, at intermediate xx suggesting that the magnetic order in Na2_2IrO3_3 and Li2_2IrO3_3 are distinct, and that at x≈0.7x\approx 0.7, the compound is close to a magnetically disordered phase that has been sought after in Na2_2IrO3_3 and Li2_2IrO3_3. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir4+^{4+} ions changes sign from Na2_2IrO3_3 and Li2_2IrO3_3, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by \jeff=1/2 moments.Comment: updated version with more dat
    • …
    corecore