47 research outputs found

    All-optical conditional logic with a nonlinear photonic crystal nanocavity

    Full text link
    We demonstrate tunable frequency-converted light mediated by a chi-(2) nonlinear photonic crystal nanocavity. The wavelength-scale InP-based cavity supports two closely-spaced localized modes near 1550 nm which are resonantly excited by a 130 fs laser pulse. The cavity is simultaneously irradiated with a non-resonant probe beam, giving rise to rich second-order scattering spectra reflecting nonlinear mixing of the different resonant and non-resonant components. In particular, we highlight the radiation at the sum frequencies of the probe beam and the respective cavity modes. This would be a useful, minimally-invasive monitor of the joint occupancy state of multiple cavities in an integrated optical circuit.Comment: 4 pages, 4 figure

    Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities

    Get PDF
    We demonstrate photonic crystal nanobeam cavities that support both TE- and TM-polarized modes, each with a Quality factor greater than one million and a mode volume on the order of the cubic wavelength. We show that these orthogonally polarized modes have a tunable frequency separation and a high nonlinear spatial overlap. We expect these cavities to have a variety of applications in resonance-enhanced nonlinear optics.Comment: 4 pages, 4 figure

    Efficient Terahertz Generation in Triply Resonant Nonlinear Photonic Crystal Microcavities

    Full text link
    We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi(2) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible in an experimentally feasible geometry, with the operating output power at the point of optimal total conversion efficiency adjustable by varying the mode quality (Q) factors.Comment: 8 pages, 3 figure

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
    corecore