6,326 research outputs found

    Coping with strong translational noncrystallographic symmetry and extreme anisotropy in molecular replacement with Phaser: human Rab27a

    Get PDF
    Data pathologies caused by effects such as diffraction anisotropy and translational noncrystallographic symmetry (tNCS) can dramatically complicate the solution of the crystal structures of macromolecules. Such problems were encountered in determining the structure of a mutant form of Rab27a, a member of the Rab GTPases. Mutant Rab27a constructs that crystallize in the free form were designed for use in the discovery of drugs to reduce primary tumour invasiveness and metastasis. One construct, hRab27aMut, crystallized within 24 h and diffracted to 2.82 Å resolution, with a unit cell possessing room for a large number of protein copies. Initial efforts to solve the structure using molecular replacement by Phaser were not successful. Analysis of the data set revealed that the crystals suffered from both extreme anisotropy and strong tNCS. As a result, large numbers of reflections had estimated standard deviations that were much larger than their measured intensities and their expected intensities, revealing problems with the use of such data at the time in Phaser. By eliminating extremely weak reflections with the largest combined effects of anisotropy and tNCS, these problems could be avoided, allowing a molecular-replacement solution to be found. The lessons that were learned in solving this structure have guided improvements in the numerical analysis used in Phaser, particularly in identifying diffraction measurements that convey very little information content. The calculation of information content could also be applied as an alternative to ellipsoidal truncation. The post-mortem analysis also revealed an oversight in accounting for measurement errors in the fast rotation function. While the crystal of mutant Rab27a is not amenable to drug screening, the structure can guide new modifications to obtain more suitable crystal forms

    Versatile selective evolutionary pressure using synthetic defect in universal metabolism

    Get PDF
    Versatile selective evolutionary pressure using synthetic defect in universal metabolis

    Engineering Nitrogenases for synthetic nitrogen fixation: From pathway engineering to directed evolution

    Get PDF
    Globally, agriculture depends on industrial nitrogen fertilizer to improve crop growth. Fertilizer production consumes fossil fuels and contributes to environmental nitrogen pollution. A potential solution would be to harness nitrogenases—enzymes capable of converting atmospheric nitrogen N2 to NH3 in ambient conditions. It is therefore a major goal of synthetic biology to engineer functional nitrogenases into crop plants, or bacteria that form symbiotic relationships with crops, to support growth and reduce dependence on industrially produced fertilizer. This review paper highlights recent work toward understanding the functional requirements for nitrogenase expression and manipulating nitrogenase gene expression in heterologous hosts to improve activity and oxygen tolerance and potentially to engineer synthetic symbiotic relationships with plants

    Crystal structure of the [2Fe-2S] protein I (Shethna protein I) from Azotobacter vinelandii

    Get PDF
    Azotobacter vinelandii is a model diazotroph and is the source of most nitrogenase material for structural and biochemical work. Azotobacter can grow in above-atmospheric levels of oxygen, despite the sensitivity of nitrogenase activity to oxygen. Azotobacter has many iron–sulfur proteins in its genome, which were identified as far back as the 1960s and probably play roles in the complex redox chemistry that Azotobacter must maintain when fixing nitrogen. Here, the 2.1 Å resolution crystal structure of the [2Fe–2S] protein I (Shethna protein I) from A. vinelandii is presented, revealing a homodimer with the [2Fe–2S] cluster coordinated by the surrounding conserved cysteine residues. It is similar to the structure of the thioredoxin-like [2Fe–2S] protein from Aquifex aeolicus, including the positions of the [2Fe–2S] clusters and conserved cysteine residues. The structure of Shethna protein I will provide information for understanding its function in relation to nitrogen fixation and its evolutionary relationships to other ferredoxins

    Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes.

    No full text
    The PsbQ-like protein, termed CyanoQ, found in the cyanobacterium Synechocystis sp. PCC 6803 is thought to bind to the lumenal surface of photosystem II (PSII), helping to shield the Mn(4)CaO(5) oxygen-evolving cluster. CyanoQ is, however, absent from the crystal structures of PSII isolated from thermophilic cyanobacteria raising the possibility that the association of CyanoQ with PSII might not be a conserved feature. Here, we show that CyanoQ (encoded by tll2057) is indeed expressed in the thermophilic cyanobacterium Thermosynechococcus elongatus and provide evidence in support of its assignment as a lipoprotein. Using an immunochemical approach, we show that CyanoQ co-purifies with PSII and is actually present in highly pure PSII samples used to generate PSII crystals. The absence of CyanoQ in the final crystal structure is possibly due to detachment of CyanoQ during crystallisation or its presence in sub-stoichiometric amounts. In contrast, the PsbP homologue, CyanoP, is severely depleted in isolated PSII complexes. We have also determined the crystal structure of CyanoQ from T. elongatus to a resolution of 1.6 Å. It lacks bound metal ions and contains a four-helix up-down bundle similar to the ones found in Synechocystis CyanoQ and spinach PsbQ. However, the N-terminal region and extensive lysine patch that are thought to be important for binding of PsbQ to PSII are not conserved in T. elongatus CyanoQ. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11120-014-0010-z) contains supplementary material, which is available to authorized users

    Synthetic beta-solenoid proteins with the fragment-free computational design of a beta-hairpin extension

    Get PDF
    The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design, as they can be synthesized chemically or biologically, and can self-assemble. However the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a new class of synthetic repeat protein, based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold, and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56 ˚A resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole domain insertions by inserting a domain into one of the designed loops

    Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria

    Get PDF
    One strategy for enhancing photosynthesis in crop plants is to improve the ability to repair photosystem II (PSII) in response to irreversible damage by light. D espite the pivotal role of thylakoid embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH exp ression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero oligo meric complex involved in PSII repair. We show using X ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C terminal heli x and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in Ft sH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen i nfection. Downregulating FtsH function and the PSII repair cycle via THF1 would cont ribute to the productio

    Chlorophyll f synthesis by a super-rogue photosystem II complex

    Get PDF
    Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term ‘super-rogue’ PSII, with an unexpected role in pigment biosynthesis rather than water oxidation
    corecore